For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (.
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
思路:
注意特殊情况0000 和 6174.
Code:
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 int charToInt(vector<char>& v) { 6 int num = 0; 7 for (int i = 0; i < 4; ++i) num = num * 10 + v[i]; 8 return num; 9 } 10 11 vector<char> intTochar(int n) { 12 vector<char> num(4); 13 for (int i = 3; i >= 0; --i) { 14 num[i] = n % 10; 15 n /= 10; 16 } 17 return num; 18 } 19 20 int main() { 21 int n; 22 cin >> n; 23 if (n == 0) printf("%04d - %04d = %04d ", 0, 0, 0); 24 if (n == 6174) printf("%04d - %04d = %04d ", 7641, 1467, 6174); 25 int last = -1, temp = n; 26 while (last != temp) { 27 vector<char> v = intTochar(temp); 28 sort(v.begin(), v.end(), greater<char>()); 29 int max = charToInt(v); 30 sort(v.begin(), v.end(), less<char>()); 31 int min = charToInt(v); 32 last = temp; 33 temp = max - min; 34 if (temp == last) break; 35 printf("%04d - %04d = %04d ", max, min, temp); 36 } 37 return 0; 38 }