• 1128 N Queens Puzzle


    The "eight queens puzzle" is the problem of placing eight chess queens on an 8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

    Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (, where Q​i​​ is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

    8q.jpg 9q.jpg
    Figure 1   Figure 2

    Input Specification:

    Each input file contains several test cases. The first line gives an integer K (1). Then K lines follow, each gives a configuration in the format "N Q​1​​ Q​2​​ ... Q​N​​", where 4 and it is guaranteed that 1 for all ,. The numbers are separated by spaces.

    Output Specification:

    For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.

    Sample Input:

    4
    8 4 6 8 2 7 1 3 5
    9 4 6 7 2 8 1 9 5 3
    6 1 5 2 6 4 3
    5 1 3 5 2 4
    
     

    Sample Output:

    YES
    NO
    NO
    YES

    题意:

      给出N个皇后所在的位置判断是不是满足N皇后的要求。

    思路:

      本来想着建立一个棋盘,把N个皇后放在相应的位置上,然后上下左右遍历判断。后来发现这样不仅麻烦而且很low,然后就想到了根据位置的关系abs(v[j] - v[p]) == abs(j - p)来判断是不是在对角线上。

    Code:

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 int main() {
     6     int n, k, t;
     7     bool isSolution;
     8     cin >> n;
     9     for (int i = 0; i < n; ++i) {
    10         cin >> k;
    11         vector<int> v(k + 5);
    12         set<int> s;
    13         isSolution = true;
    14         for (int j = 1; j <= k; ++j) cin >> v[j];
    15         for (int j = 1; j <= k; ++j) {
    16             for (int p = j + 1; p < k; ++p) {
    17                 if ( v[j] == v[p] || abs(v[j] - v[p]) == abs(j - p)) {
    18                     isSolution = false;
    19                     break;
    20                 }
    21             }
    22             if (!isSolution) break;
    23         }
    24         if (isSolution)
    25             cout << "YES" << endl;
    26         else
    27             cout << "NO" << endl;
    28     }
    29     return 0;
    30 }
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    排球教练积分程序
    排球积分程序
    排球积分程序
    14周总结
    本周总结
    排球计分规则
    我与计算机
    排球计分程序
    《如何成为一个高手》观后感
    十八周总结
  • 原文地址:https://www.cnblogs.com/h-hkai/p/12748706.html
Copyright © 2020-2023  润新知