• 576. Out of Boundary Paths


    There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ball to adjacent cell or cross the grid boundary in four directions (up, down, left, right). However, you can at most move N times. Find out the number of paths to move the ball out of grid boundary. The answer may be very large, return it after mod 109 + 7.

    Example 1:

    Input: m = 2, n = 2, N = 2, i = 0, j = 0
    Output: 6
    Explanation:
    

    Example 2:

    Input: m = 1, n = 3, N = 3, i = 0, j = 1
    Output: 12
    Explanation:
    

    Note:

    1. Once you move the ball out of boundary, you cannot move it back.
    2. The length and height of the grid is in range [1,50].
    3. N is in range [0,50].
     

    Approach #1: DP. [C++]

    class Solution {
    public:
        int findPaths(int m, int n, int N, int i, int j) {
            const int mod = 1000000007;
            vector<vector<vector<int>>> dp(N+1, vector<vector<int>>(m, vector<int>(n, 0)));
            vector<int> dirs = {1, 0, -1, 0, 1};
            for (int s = 1; s <= N; ++s) {
                for (int x = 0; x < m; ++x) {
                    for (int y = 0; y < n; ++y) {
                        for (int k = 0; k < 4; ++k) {
                            int dx = x + dirs[k];
                            int dy = y + dirs[k+1];
                            if (dx < 0 || dy < 0 || dx >= m || dy >= n) 
                                dp[s][x][y] += 1;
                            else 
                                dp[s][x][y] = (dp[s][x][y] + dp[s-1][dx][dy]) % mod;
                        }
                    }
                }
            }
            return dp[N][i][j];
        }
    };
    

      

    Analysis:

    Observation:

    Number of paths start from (i, j) to out of boundary <=> Number of paths start from out of boundary to (i, j).

    dp[N][i][j] : Number of paths start from out of boundary to (i, j) by moving N steps.

    dp[*][y][x] = 1, if (x, y) are out of boundary

    dp[s][i][j] = dp[s-1][i+1][j] + dp[s-1][i-1][j] + dp[s-1][i][j+1] + dp[s-1][i][j-1]

    Ans: dp[N][i][j]

    Time complexity: O(N*m*n)

    Space complexity: O(N*m*n) -> O(m*n)

    Reference:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-576-out-of-boundary-paths/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    使用Oracle PROFILE控制会话空闲时间
    ORACLE sid,pid,spid总结
    总结:基于Oracle Logminer数据同步
    从操作系统rm数据文件后,利用句柄与rman恢复的过程。(已验证)
    SPOJ GCDEX (数论)
    C++类构造函数
    [置顶] 删除:大数据取舍之道读书笔记
    paip.c++ qt 图片处理 检测损坏的图片
    paip.c++ qt 目录遍历以及文件操作
    AJAX最简单的原理以及应用
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10498491.html
Copyright © 2020-2023  润新知