Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Note:
- All numbers will be positive integers.
- The solution set must not contain duplicate combinations.
Example 1:
Input: k = 3, n = 7 Output: [[1,2,4]]
Example 2:
Input: k = 3, n = 9 Output: [[1,2,6], [1,3,5], [2,3,4]]
Approach #1: BackTracking. [C++]
class Solution { public: vector<vector<int>> combinationSum3(int k, int n) { vector<int> sol; vector<vector<int>> ans; helper(k, n, sol, ans); return ans; } private: void helper(const int k, int n, vector<int> v, vector<vector<int>>& ans) { if (v.size() == k && n == 0) { ans.push_back(v); return; } if (v.size() < k) { for (int i = v.empty()?1:v.back()+1; i <= 9; ++i) { if (n - i < 0) break; v.push_back(i); helper(k, n-i, v, ans); // this is I don't care in the first time. v.pop_back(); } } } };