Given a string S
of digits, such as S = "123456579"
, we can split it into a Fibonacci-like sequence [123, 456, 579].
Formally, a Fibonacci-like sequence is a list F
of non-negative integers such that:
0 <= F[i] <= 2^31 - 1
, (that is, each integer fits a 32-bit signed integer type);F.length >= 3
;- and
F[i] + F[i+1] = F[i+2]
for all0 <= i < F.length - 2
.
Also, note that when splitting the string into pieces, each piece must not have extra leading zeroes, except if the piece is the number 0 itself.
Return any Fibonacci-like sequence split from S
, or return []
if it cannot be done.
Example 1:
Input: "123456579" Output: [123,456,579]
Example 2:
Input: "11235813" Output: [1,1,2,3,5,8,13]
Example 3:
Input: "112358130" Output: [] Explanation: The task is impossible.
Example 4:
Input: "0123" Output: [] Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid.
Example 5:
Input: "1101111" Output: [110, 1, 111] Explanation: The output [11, 0, 11, 11] would also be accepted.
Note:
1 <= S.length <= 200
S
contains only digits.
Approach #1: C++.
class Solution { public: vector<int> splitIntoFibonacci(string S) { vector<int> nums; helper(S, nums, 0); return nums; } bool helper(string S, vector<int>& nums, int start) { int len = S.length(); // if we reached end of string & we have more than 2 elements // in our sequence then return true if (start >= len && nums.size() >= 3) return true; // since '0' in beginning is not allowed therefore if the current char is '0' // then we can use it alone only and cann't extend it by adding more chars at the back. // otherwise we make take upto 10 chars (length og MAX_INT) int maxLen = (S[start] == '0') ? 1 : 10; // Try getting a solution by forming a number with 'i' chars begging with 'start' for (int i = 1; i <= maxLen && start + i <= S.size(); ++i) { long long temp = stoll(S.substr(start, i)); if (temp > INT_MAX) return false; int sz = nums.size(); // If fibonacci property is not satisfied then we cann't get a solution if (sz >= 2 && nums[sz-1] + nums[sz-2] < temp) return false; if (sz <= 1 || nums[sz-1] + nums[sz-2] == temp) { nums.push_back(temp); if (helper(S, nums, start+i)) return true; nums.pop_back(); } } return false; } };