Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n]
inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.
Example 1:
Input: nums = [1, 3], n = 6 Output: 1 Explanation: Combinations of nums are [1], [3], [1, 3], which form possible sums of: 1, 3, 4 Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1, 3], [2, 3], [1, 2, 3]. Possible sums are 1, 2, 3, 4, 5, 6 which now covers the range [1, 6]. So we only need 1 patch.
Example 2:
Input: nums = [1, 5, 10], n = 20. Output: 2 Explanation: The two patches can be [2, 4].
Example 3:
Input: nums = [1, 2, 2], n = 5. Output: 0
Approach #1: C++. [easy understand]
class Solution { public: int minPatches(vector<int>& nums, int n) { int size = nums.size(); long pre_sum = 0; int ans = 0; for (int i = 0; i < size && pre_sum < n; ++i) { int v = nums[i]; while (v > pre_sum + 1 && pre_sum < n) { pre_sum += (pre_sum + 1); ans += 1; } pre_sum += v; } if (pre_sum < n) { while (pre_sum < n) { pre_sum += (pre_sum + 1); ans += 1; } } return ans; } };
Analysis:
We can use pre_sum as base to extend the sum. If current element nums[i] > pre_sum, we should extend the pre_sum by add (pre_sum + 1).
Approach #2: C++. [This is more clear.]
int minPatches(vector<int>& nums, int n) { long miss = 1, added = 0, i = 0; while (miss <= n) { if (i < nums.size() && nums[i] <= miss) { miss += nums[i++]; } else { miss += miss; added++; } } return added; }
Analysis: