• 417. Pacific Atlantic Water Flow


    Given an m x n matrix of non-negative integers representing the height of each unit cell in a continent, the "Pacific ocean" touches the left and top edges of the matrix and the "Atlantic ocean" touches the right and bottom edges.

    Water can only flow in four directions (up, down, left, or right) from a cell to another one with height equal or lower.

    Find the list of grid coordinates where water can flow to both the Pacific and Atlantic ocean.

    Note:

    1. The order of returned grid coordinates does not matter.
    2. Both m and n are less than 150.

    Example:

    Given the following 5x5 matrix:
    
      Pacific ~   ~   ~   ~   ~ 
           ~  1   2   2   3  (5) *
           ~  3   2   3  (4) (4) *
           ~  2   4  (5)  3   1  *
           ~ (6) (7)  1   4   5  *
           ~ (5)  1   1   2   4  *
              *   *   *   *   * Atlantic
    
    Return:
    
    [[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).

    Approach #1: C++. [DFS]

    class Solution {
    public:
        vector<pair<int, int>> pacificAtlantic(vector<vector<int>>& matrix) {
            if (matrix.size() == 0) return ans;
            
            int m = matrix.size();
            int n = matrix[0].size();
            
            visited.resize(m, vector<int>(n, 0));
            
            for (int i = 0; i < m; ++i) {
                dfs(i, 0, matrix, INT_MIN, 1);
                dfs(i, n-1, matrix, INT_MIN, 2);
            }
            
            for (int j = 0; j < n; ++j) {
                dfs(0, j, matrix, INT_MIN, 1);
                dfs(m-1, j, matrix, INT_MIN, 2);
            }
            
            return ans;
        }
        
    private:
        vector<vector<int>> visited;
        vector<pair<int, int>> ans;
        
        void dfs(int i, int j, vector<vector<int>>& matrix, int pre, int lable) {
            if (i < 0 || i >= matrix.size() || j < 0 || j >= matrix[0].size() || 
                matrix[i][j] < pre || visited[i][j] == 3 || visited[i][j] == lable) 
                return ;
            
            visited[i][j] += lable;
            
            if (visited[i][j] == 3) ans.push_back({i, j});
            
            dfs(i+1, j, matrix, matrix[i][j], lable);
            dfs(i-1, j, matrix, matrix[i][j], lable);
            dfs(i, j+1, matrix, matrix[i][j], lable);
            dfs(i, j-1, matrix, matrix[i][j], lable);
        }
    };
    
    

      

    Analysis:

    In this solution we travel start at the edges, from difference edges with difference lable represent the difference ocean. if visited[i][j]'s value equal to 3, this illustrate that at this point the water can flow both the Pacific and Atlantic ocean.

    Approach #2: Java. [BFS]

    class Solution {
        int[][] dirs = new int[][] {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
        public List<int[]> pacificAtlantic(int[][] matrix) {
            List<int[]> res = new LinkedList<>();
            if (matrix == null || matrix.length == 0 || matrix[0].length == 0) 
                return res;
            
            int n = matrix.size;
            int m = matrix[0].size;
            
            boolean[][] pacific = new boolean[n][m];
            boolean[][] atlantic = new boolean[n][m];
            Queue<int[]> pQueue = new LinkedList<>();
            Queue<int[]> aQueue = new LinkedList<>();
            
            for (int i = 0; i < n; ++i) {
                pQueue.offer(new int[]{i, 0});
                aQueue.offer(new int[]{i, m-1});
                pacific[i][0] = true;
                atlantic[i][m-1] = true;
            }
            
            for (int i = 0; i < m; ++i) {
                pQueue.offer(new int[]{0, i});
                aQueue.offer(new int[]{n-1, i});
                pacific[0][i] = true;
                atlantic[n-1][i] = true;
            }
            
            bfs(matrix, pQueue, pacific);
            bfs(matrix, aQueue, atlantic);
            
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < m; ++j) {
                    if (pacific[i][j] && atlantic[i][j]) {
                        res.add(new int[]{i, j});
                    }
                }
            }
            
            return res;
        }
        
        public void bfs(int[][] matrix, Queue<int[]> queue, boolean[][] visited) {
            int n = matrix.length;
            int m = matrix[0].length;
            
            while (!queue.isEmpty()) {
                int[] cur = queue.poll();
                for (int[] d : dirs) {
                    int x = cur[0] + d[0];
                    int y = cur[1] + d[1];
                    
                    if (x < 0 || x > n-1 || y < 0 || y > m-1 || visited[x][y] || matrix[x][y] < matrix[cur[0]][cur[1]])
                        continue;
                    
                    visited[x][y] = true;
                    queue.offer(new int[]{x, y});
                }
            }
        }
    }
    

      

    Approach #3: Python. 

    class Solution(object):
        def pacificAtlantic(self, matrix):
            """
            :type matrix: List[List[int]]
            :rtype: List[List[int]]
            """
            if not matrix: return []
            
            self.directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]
            
            m = len(matrix)
            n = len(matrix[0])
            
            p_visited = [[False for _ in range(n)] for _ in range(m)]
            a_visited = [[False for _ in range(n)] for _ in range(m)]
            
            result = []
            
            for i in range(m):
                self.dfs(matrix, i, 0, p_visited, m, n)
                self.dfs(matrix, i, n-1, a_visited, m, n)
                
            for i in range(n):
                self.dfs(matrix, 0, i, p_visited, m, n)
                self.dfs(matrix, m-1, i, a_visited, m, n)
                
            for i in range(m):
                for j in range(n):
                    if p_visited[i][j] and a_visited[i][j]:
                        result.append([i, j])
                        
            return result
        
        def dfs(self, matrix, i, j, visited, m, n):
            visited[i][j] = True
            
            for dir in self.directions:
                x, y = i + dir[0], j + dir[1]
                if x < 0 or x >= m or y < 0 or y >= n or visited[x][y] or matrix[x][y] < matrix[i][j]:
                    continue
                self.dfs(matrix, x, y, visited, m, n)
                
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    参加过的面试题目总结
    小论文实验讨论——不同的分类算法
    【设计模式】行为型07备忘录模式(Memento Pattern)
    【设计模式】行为型06命令模式(Command Pattern)
    【设计模式】行为型05责任链模式(Chain of responsibility Pattern)
    【设计模式】行为型04迭代器模式(Iterator Pattern)
    【设计模式】行为型03观察者模式(Observer Pattern)
    【设计模式】行为型02模板方法模式(Template Method Patten)
    【JVM】02垃圾回收机制
    【死磕线程】线程同步机制_java多线程之线程锁
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10125141.html
Copyright © 2020-2023  润新知