problem
- 给出一张二分图
- 求最大匹配
solution
- 新建一个源点s和汇点t
- 从源点s到集合A各连一条边,容量为1
- 从集合B到汇点t到各连一条边,容量为1
- 让二分图内部的边容量为1
很容易发现,形成的新的n+2个点,n+m条边的网络的最大流量就是二分图的最大匹配数。
于是就变成了最大流模板。
codes
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef long long LL;
const int maxn = 110, maxm = 5050<<1;
int n, m, s, t;
int tot=1, head[maxn], Next[maxm], ver[maxm], edge[maxm];
void AddEdge(int x, int y, int z){
ver[++tot] = y; edge[tot] = z;
Next[tot] = head[x]; head[x] = tot;
ver[++tot] = x; edge[tot] = 0;
Next[tot] = head[y]; head[y] = tot;
}
queue<int>q;
LL dep[maxn], maxflow;
bool bfs(){
memset(dep,0,sizeof(dep));
while(q.size())q.pop();
q.push(s); dep[s] = 1;
while(q.size()){
int x = q.front(); q.pop();
for(int i = head[x]; i; i = Next[i]){
if(edge[i] && !dep[ver[i]]){
q.push(ver[i]);
dep[ver[i]] = dep[x]+1;
if(ver[i] == t)return true;
}
}
}
return false;
}
int findpath(int x, int flow){
if(x == t)return flow;
int rest = flow;
for(int i = head[x]; i && rest; i = Next[i]){
if(edge[i] && dep[ver[i]]==dep[x]+1){
int k = findpath(ver[i], min(rest, edge[i]));
if(!k)dep[ver[i]] = 0;
edge[i] -= k;
edge[i^1] += k;
rest -= k;
}
}
return flow-rest;
}
int dinic(int s, int t){
LL flow = 0;
while(bfs())
while(flow=findpath(s,1<<30))maxflow += flow;
return maxflow;
}
int main(){
cin>>n>>m;
int a, b;
while(cin>>a>>b){
if(a>b)swap(a,b);
AddEdge(a,b,1);
}
s = 0, t = n+1;
for(int i = 1; i <= m; i++)AddEdge(s,i,1);
for(int i = m+1; i <= n; i++)AddEdge(i,t,1);
cout<<dinic(s,t)<<'
';
return 0;
}