• 深度学习----Xavier初始化方法


    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。

    为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。

    基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件。

    文章先假设的是线性激活函数,而且满足0点处导数为1,即 
    这里写图片描述

    现在我们先来分析一层卷积: 
    这里写图片描述 
    其中ni表示输入个数。

    根据概率统计知识我们有下面的方差公式: 
    这里写图片描述

    特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为: 
    这里写图片描述

    进一步假设输入x和权重w独立同分布,则有: 
    这里写图片描述

    于是,为了保证输入与输出方差一致,则应该有: 
    这里写图片描述

    对于一个多层的网络,某一层的方差可以用累积的形式表达: 
    这里写图片描述

    特别的,反向传播计算梯度时同样具有类似的形式: 
    这里写图片描述

    综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:

    这里写图片描述

    但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足

    ——————————————————————————————————————— 
    这里写图片描述 
    ———————————————————————————————————————

    学过概率统计的都知道 [a,b] 间的均匀分布的方差为: 
    这里写图片描述

    因此,Xavier初始化的实现就是下面的均匀分布:

    —————————————————————————————————————————— 
    这里写图片描述 
    ———————————————————————————————————————————

    下面,我们来看一下caffe中具体是怎样实现的,代码位于include/caffe/filler.hpp文件中。

    template <typename Dtype>
    class XavierFiller : public Filler<Dtype> {
     public:
      explicit XavierFiller(const FillerParameter& param)
          : Filler<Dtype>(param) {}
      virtual void Fill(Blob<Dtype>* blob) {
        CHECK(blob->count());
        int fan_in = blob->count() / blob->num();
        int fan_out = blob->count() / blob->channels();
        Dtype n = fan_in;  // default to fan_in
        if (this->filler_param_.variance_norm() ==
            FillerParameter_VarianceNorm_AVERAGE) {
          n = (fan_in + fan_out) / Dtype(2);
        } else if (this->filler_param_.variance_norm() ==
            FillerParameter_VarianceNorm_FAN_OUT) {
          n = fan_out;
        }
        Dtype scale = sqrt(Dtype(3) / n);
        caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
            blob->mutable_cpu_data());
        CHECK_EQ(this->filler_param_.sparse(), -1)
             << "Sparsity not supported by this Filler.";
      }
    };

    由上面可以看出,caffe的Xavier实现有三种选择

    (1) 默认情况,方差只考虑输入个数: 
    这里写图片描述

    (2) FillerParameter_VarianceNorm_FAN_OUT,方差只考虑输出个数: 
    这里写图片描述

    (3) FillerParameter_VarianceNorm_AVERAGE,方差同时考虑输入和输出个数: 
    这里写图片描述

    之所以默认只考虑输入,我个人觉得是因为前向信息的传播更重要一些

  • 相关阅读:
    Struts2的HelloWorld
    javaScript 避免使用eval
    javaScript 全局变量注意
    NET下的XML序列化 5
    通过aps.net创建web services 3
    XML web Service标准2
    webServices简介笔记1
    批量更新
    物理数据模型(PDM)->概念数据模型 (CDM)->面向对象模型 (OOM):适用于已经设计好数据库表结构了。
    json时间格式的互换
  • 原文地址:https://www.cnblogs.com/guohaoyu110/p/7487290.html
Copyright © 2020-2023  润新知