• 深度学习caffe测试代码c++


    #include <caffe/caffe.hpp>

    #include <opencv2/core/core.hpp>

    #include <opencv2/highgui/highgui.hpp>

    #include <opencv2/imgproc/imgproc.hpp>

    #include <iosfwd>

    #include <memory>

    #include <string>

    #include <utility>

    #include <vector>

     

    using namespace caffe// NOLINT(build/namespaces)

    using std::string;

     

    /* Pair (label, confidence) representing a prediction. */

    typedef std::pair<string, float> Prediction;

     

    class Classifier {

    public:

        Classifier(const string& model_file,

                   const string& trained_file,

                   const string& mean_file,

                   const string& label_file);

        

        std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

        

    private:

        void SetMean(const string& mean_file);

        

        std::vector<float> Predict(const cv::Mat& img);

        

        void WrapInputLayer(std::vector<cv::Mat>* input_channels);

        

        void Preprocess(const cv::Mat& img,

                        std::vector<cv::Mat>* input_channels);

        

    private:

        shared_ptr<Net<float> > net_;

        cv::Size input_geometry_;

        int num_channels_;

        cv::Mat mean_;

        std::vector<string> labels_;

    };

     

    Classifier::Classifier(const string& model_file,

                           const string& trained_file,

                           const string& mean_file,

                           const string& label_file) {

    #ifdef CPU_ONLY

        Caffe::set_mode(Caffe::CPU);

    #else

        Caffe::set_mode(Caffe::GPU);

    #endif

        

        /* Load the network. */

        net_.reset(new Net<float>(model_file, TEST));

        net_->CopyTrainedLayersFrom(trained_file);

        

        CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";

        CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

        

        Blob<float>* input_layer = net_->input_blobs()[0];

        num_channels_ = input_layer->channels();

        CHECK(num_channels_ == 3 || num_channels_ == 1)

        << "Input layer should have 1 or 3 channels.";

        input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

        

        /* Load the binaryproto mean file. */

        SetMean(mean_file);

        

        /* Load labels. */

        std::ifstream labels(label_file.c_str());

        CHECK(labels) << "Unable to open labels file " << label_file;

        string line;

        while (std::getline(labels, line))

            labels_.push_back(string(line));

        

        Blob<float>* output_layer = net_->output_blobs()[0];

        CHECK_EQ(labels_.size(), output_layer->channels())

        << "Number of labels is different from the output layer dimension.";

    }

     

    static bool PairCompare(const std::pair<float, int>& lhs,

                            const std::pair<float, int>& rhs) {

        return lhs.first > rhs.first;

    }

     

    /* Return the indices of the top N values of vector v. */

    static std::vector<int> Argmax(const std::vector<float>& v, int N) {

        std::vector<std::pair<float, int> > pairs;

        for (size_t i = 0; i < v.size(); ++i)

            pairs.push_back(std::make_pair(v[i], i));

        std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

        

        std::vector<int> result;

        for (int i = 0; i < N; ++i)

            result.push_back(pairs[i].second);

        return result;

    }

     

    /* Return the top N predictions. */

    std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {

        std::vector<float> output = Predict(img);

        

        std::vector<int> maxN = Argmax(output, N);

        std::vector<Prediction> predictions;

        for (int i = 0; i < N; ++i) {

            int idx = maxN[i];

            predictions.push_back(std::make_pair(labels_[idx], output[idx]));

        }

        

        return predictions;

    }

     

    /* Load the mean file in binaryproto format. */

    void Classifier::SetMean(const string& mean_file) {

        BlobProto blob_proto;

        ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

        

        /* Convert from BlobProto to Blob<float> */

        Blob<float> mean_blob;

        mean_blob.FromProto(blob_proto);

        CHECK_EQ(mean_blob.channels(), num_channels_)

        << "Number of channels of mean file doesn't match input layer.";

        

        /* The format of the mean file is planar 32-bit float BGR or grayscale. */

        std::vector<cv::Mat> channels;

        float* data = mean_blob.mutable_cpu_data();

        for (int i = 0; i < num_channels_; ++i) {

            /* Extract an individual channel. */

            cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);

            channels.push_back(channel);

            data += mean_blob.height() * mean_blob.width();

        }

        

        /* Merge the separate channels into a single image. */

        cv::Mat mean;

        cv::merge(channels, mean);

        

        /* Compute the global mean pixel value and create a mean image

         * filled with this value. */

        cv::Scalar channel_mean = cv::mean(mean);

        mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);

    }

     

    std::vector<float> Classifier::Predict(const cv::Mat& img) {

        Blob<float>* input_layer = net_->input_blobs()[0];

        input_layer->Reshape(1, num_channels_,

                             input_geometry_.height, input_geometry_.width);

        /* Forward dimension change to all layers. */

        net_->Reshape();

        

        std::vector<cv::Mat> input_channels;

        WrapInputLayer(&input_channels);

        

        Preprocess(img, &input_channels);

        

        net_->ForwardPrefilled();

        

        /* Copy the output layer to a std::vector */

        Blob<float>* output_layer = net_->output_blobs()[0];

        const float* begin = output_layer->cpu_data();

        const float* end = begin + output_layer->channels();

        return std::vector<float>(begin, end);

    }

     

    /* Wrap the input layer of the network in separate cv::Mat objects

     * (one per channel). This way we save one memcpy operation and we

     * don't need to rely on cudaMemcpy2D. The last preprocessing

     * operation will write the separate channels directly to the input

     * layer. */

    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {

        Blob<float>* input_layer = net_->input_blobs()[0];

        

        int width = input_layer->width();

        int height = input_layer->height();

        float* input_data = input_layer->mutable_cpu_data();

        for (int i = 0; i < input_layer->channels(); ++i) {

            cv::Mat channel(height, width, CV_32FC1, input_data);

            input_channels->push_back(channel);

            input_data += width * height;

        }

    }

     

    void Classifier::Preprocess(const cv::Mat& img,

                                std::vector<cv::Mat>* input_channels) {

        /* Convert the input image to the input image format of the network. */

        cv::Mat sample;

        if (img.channels() == 3 && num_channels_ == 1)

            cv::cvtColor(img, sample, CV_BGR2GRAY);

        else if (img.channels() == 4 && num_channels_ == 1)

            cv::cvtColor(img, sample, CV_BGRA2GRAY);

        else if (img.channels() == 4 && num_channels_ == 3)

            cv::cvtColor(img, sample, CV_BGRA2BGR);

        else if (img.channels() == 1 && num_channels_ == 3)

            cv::cvtColor(img, sample, CV_GRAY2BGR);

        else

            sample = img;

        

        cv::Mat sample_resized;

        if (sample.size() != input_geometry_)

            cv::resize(sample, sample_resized, input_geometry_);

        else

            sample_resized = sample;

        

        cv::Mat sample_float;

        if (num_channels_ == 3)

            sample_resized.convertTo(sample_float, CV_32FC3);

        else

            sample_resized.convertTo(sample_float, CV_32FC1);

        

        cv::Mat sample_normalized;

        cv::subtract(sample_float, mean_, sample_normalized);

        

        /* This operation will write the separate BGR planes directly to the

         * input layer of the network because it is wrapped by the cv::Mat

         * objects in input_channels. */

        cv::split(sample_normalized, *input_channels);

        

        CHECK(reinterpret_cast<float*>(input_channels->at(0).data)

              == net_->input_blobs()[0]->cpu_data())

        << "Input channels are not wrapping the input layer of the network.";

    }

     

    int main(int argc, char** argv) {

        if (argc != 6) {

            std::cerr << "Usage: " << argv[0]

            << " deploy.prototxt network.caffemodel"

            << " mean.binaryproto labels.txt img.jpg" << std::endl;

            return 1;

        }

        

        ::google::InitGoogleLogging(argv[0]);

        

        string model_file   = argv[1];

        string trained_file = argv[2];

        string mean_file    = argv[3];

        string label_file   = argv[4];

        Classifier classifier(model_file, trained_file, mean_file, label_file);

        

        string file = argv[5];

        

        std::cout << "---------- Prediction for "

        << file << " ----------" << std::endl;

        

        cv::Mat img = cv::imread(file, -1);

        CHECK(!img.empty()) << "Unable to decode image " << file;

        std::vector<Prediction> predictions = classifier.Classify(img);

        

        /* Print the top N predictions. */

        for (size_t i = 0; i < predictions.size(); ++i) {

            Prediction p = predictions[i];

            std::cout << std::fixed << std::setprecision(4) << p.second << " - ""

            << p.first << """ << std::endl;

        }

    }

  • 相关阅读:
    Unique ID Generate Notes
    My Apple Developer Library Catalog
    Flickr Hosts
    JqGrid 使用方法详解
    动态加载JS代码
    如何让Asp.net webAPI返回JSON格式数据
    谷歌(Chrome)安装Advanced REST Client插件
    .net chart(图表)控件的使用-System.Windows.Forms.DataVisualization.dll
    ASP.NET伪静态 UrlRewrite(Url重写) 实现和配置
    WebService开发常用功能详解
  • 原文地址:https://www.cnblogs.com/guohaoyu110/p/6675173.html
Copyright © 2020-2023  润新知