本节目录:
1.线程队列
2.线程池
3.协程
一、线程队列
线程之间的通信我们列表行不行呢,当然行,那么队列和列表有什么区别呢?
queue队列 :使用import queue,用法与进程Queue一样
queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.
- class
queue.
Queue
(maxsize=0) #先进先出
import queue #不需要通过threading模块里面导入,直接import queue就可以了,这是python自带的 #用法基本和我们进程multiprocess中的queue是一样的 q=queue.Queue() q.put('first') q.put('second') q.put('third') # q.put_nowait() #没有数据就报错,可以通过try来搞 print(q.get()) print(q.get()) print(q.get()) # q.get_nowait() #没有数据就报错,可以通过try来搞 ''' 结果(先进先出): first second third '''
class queue.
LifoQueue
(maxsize=0) #last in fisrt out
import queue q=queue.LifoQueue() #队列,类似于栈,栈我们提过吗,是不是先进后出的顺序啊 q.put('first') q.put('second') q.put('third') # q.put_nowait() print(q.get()) print(q.get()) print(q.get()) # q.get_nowait() ''' 结果(后进先出): third second first '''
class queue.
PriorityQueue
(maxsize=0) #存储数据时可设置优先级的队列
import queue q=queue.PriorityQueue() #put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高 q.put((-10,'a')) q.put((-5,'a')) #负数也可以 # q.put((20,'ws')) #如果两个值的优先级一样,那么按照后面的值的acsii码顺序来排序,如果字符串第一个数元素相同,比较第二个元素的acsii码顺序 # q.put((20,'wd')) # q.put((20,{'a':11})) #TypeError: unorderable types: dict() < dict() 不能是字典 # q.put((20,('w',1))) #优先级相同的两个数据,他们后面的值必须是相同的数据类型才能比较,可以是元祖,也是通过元素的ascii码顺序来排序 q.put((20,'b')) q.put((20,'a')) q.put((0,'b')) q.put((30,'c')) print(q.get()) print(q.get()) print(q.get()) print(q.get()) print(q.get()) print(q.get()) ''' 结果(数字越小优先级越高,优先级高的优先出队): '''
这三种队列都是线程安全的,不会出现多个线程抢占同一个资源或数据的情况。
二、线程池
Python标准模块——concurrent.futures
到这里就差我们的线程池没有遇到了,我们用一个新的模块给大家讲,早期的时候我们没有线程池,现在python提供了一个新的标准或者说内置的模块,这个模块里面提供了新的线程池和进程池,之前我们说的进程池是在multiprocessing里面的,现在这个在这个新的模块里面,他俩用法上是一样的。
为什么要将进程池和线程池放到一起呢,是为了统一使用方式,使用threadPollExecutor和ProcessPollExecutor的方式一样,而且只要通过这个concurrent.futures导入就可以直接用他们两个了
concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池,提供异步调用 Both implement the same interface, which is defined by the abstract Executor class. #2 基本方法 #submit(fn, *args, **kwargs) 异步提交任务 #map(func, *iterables, timeout=None, chunksize=1) 取代for循环submit的操作 #shutdown(wait=True) 相当于进程池的pool.close()+pool.join()操作 wait=True,等待池内所有任务执行完毕回收完资源后才继续 wait=False,立即返回,并不会等待池内的任务执行完毕 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 submit和map必须在shutdown之前 #result(timeout=None) 取得结果 #add_done_callback(fn) 回调函数
import time import os import threading from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor def func(n): time.sleep(2) print('%s打印的:'%(threading.get_ident()),n) return n*n tpool = ThreadPoolExecutor(max_workers=5) #默认一般起线程的数据不超过CPU个数*5 # tpool = ProcessPoolExecutor(max_workers=5) #进程池的使用只需要将上面的ThreadPoolExecutor改为ProcessPoolExecutor就行了,其他都不用改 #异步执行 t_lst = [] for i in range(5): t = tpool.submit(func,i) #提交执行函数,返回一个结果对象,i作为任务函数的参数 def submit(self, fn, *args, **kwargs): 可以传任意形式的参数 t_lst.append(t) # # print(t.result()) #这个返回的结果对象t,不能直接去拿结果,不然又变成串行了,可以理解为拿到一个号码,等所有线程的结果都出来之后,我们再去通过结果对象t获取结果 tpool.shutdown() #起到原来的close阻止新任务进来 + join的作用,等待所有的线程执行完毕 print('主线程') for ti in t_lst: print('>>>>',ti.result()) # 我们还可以不用shutdown(),用下面这种方式 # while 1: # for n,ti in enumerate(t_lst): # print('>>>>', ti.result(),n) # time.sleep(2) #每个两秒去去一次结果,哪个有结果了,就可以取出哪一个,想表达的意思就是说不用等到所有的结果都出来再去取,可以轮询着去取结果,因为你的任务需要执行的时间很长,那么你需要等很久才能拿到结果,通过这样的方式可以将快速出来的结果先拿出来。如果有的结果对象里面还没有执行结果,那么你什么也取不到,这一点要注意,不是空的,是什么也取不到,那怎么判断我已经取出了哪一个的结果,可以通过枚举enumerate来搞,记录你是哪一个位置的结果对象的结果已经被取过了,取过的就不再取了 #结果分析: 打印的结果是没有顺序的,因为到了func函数中的sleep的时候线程会切换,谁先打印就没准儿了,但是最后的我们通过结果对象取结果的时候拿到的是有序的,因为我们主线程进行for循环的时候,我们是按顺序将结果对象添加到列表中的。 # 37220打印的: 0 # 32292打印的: 4 # 33444打印的: 1 # 30068打印的: 2 # 29884打印的: 3 # 主线程 # >>>> 0 # >>>> 1 # >>>> 4 # >>>> 9 # >>>> 16
ThreadPoolExecutor的使用:
只需要将这一行代码改为下面这一行就可以了,其他的代码都不用变 tpool = ThreadPoolExecutor(max_workers=5) #默认一般起线程的数据不超过CPU个数*5 # tpool = ProcessPoolExecutor(max_workers=5) 你就会发现为什么将线程池和进程池都放到这一个模块里面了,用法一样
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import threading import os,time,random def task(n): print('%s is runing' %threading.get_ident()) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': executor=ThreadPoolExecutor(max_workers=3) # for i in range(11): # future=executor.submit(task,i) s = executor.map(task,range(1,5)) #map取代了for+submit print([i for i in s])
import time import os import threading from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor def func(n): time.sleep(2) return n*n def call_back(m): print('结果为:%s'%(m.result())) tpool = ThreadPoolExecutor(max_workers=5) t_lst = [] for i in range(5): t = tpool.submit(func,i).add_done_callback(call_back)
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor from multiprocessing import Pool import requests import json import os def get_page(url): print('<进程%s> get %s' %(os.getpid(),url)) respone=requests.get(url) if respone.status_code == 200: return {'url':url,'text':respone.text} def parse_page(res): res=res.result() print('<进程%s> parse %s' %(os.getpid(),res['url'])) parse_res='url:<%s> size:[%s] ' %(res['url'],len(res['text'])) with open('db.txt','a') as f: f.write(parse_res) if __name__ == '__main__': urls=[ 'https://www.baidu.com', 'https://www.python.org', 'https://www.openstack.org', 'https://help.github.com/', 'http://www.sina.com.cn/' ] # p=Pool(3) # for url in urls: # p.apply_async(get_page,args=(url,),callback=pasrse_page) # p.close() # p.join() p=ProcessPoolExecutor(3) for url in urls: p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果
三、协程
线程实现并发的最小单位
并发:记录状态+切换
1.生成器版生成器(仅仅是模仿了下大概的思路,实质没有节省资源)
import time def f1(): for i in range(10): time.sleep(0.5) print('f1>>',i) yield def f2(): g = f1() for i in range(10): time.sleep(0.5) print('f2>>', i) next(g) f1() f2()
2.greenlet版协程
大概和生成器版差不多,两个方法来回切换。伪协程!
import time from greenlet import greenlet def f1(s): print('第一次f1'+s) g2.switch('taibai') #切换到g2这个对象的任务去执行 time.sleep(1) print('第二次f1'+s) g2.switch() def f2(s): print('第一次f2'+s) g1.switch() time.sleep(1) print('第二次f2'+s) g1 = greenlet(f1) #实例化一个greenlet对象,并将任务名称作为参数参进去 g2 = greenlet(f2) g1.switch('alex') #执行g1对象里面的任务
3.gevent版协程(真正的协程)
import gevent import time def f1(): print("第一次f1") gevent.sleep(1) print("第二次f1") def f2(): print("第一次f2") gevent.sleep(2) print("第二次f2") s = time.time() g1 = gevent.spawn(f1) #异步提交了f1任务 g2 = gevent.spawn(f2) #异步提交了f2任务 g1.join() g2.join() e = time.time() print("执行时间:",e-s) print("主程序任务")
大家会发现一个问题就是只能使用gevent.sleep来代替time.sleep。还有就是要g1.join()和g2.join()有些麻烦对不对,下面就是协程gevent版的升级版。
import gevent import time from gevent import monkey;monkey.patch_all() #可以接收所有的I/O def f1(): print("第一次f1") time.sleep(1) print("第二次f1") def f2(): print("第一次f2") time.sleep(2) print("第二次f2") s = time.time() g1 = gevent.spawn(f1) #异步提交了f1任务 g2 = gevent.spawn(f2) #异步提交了f2任务 gevent.joinall([g1,g2]) #一个列表里面是任务名等同于g1.join()和g2.join() e = time.time() print("执行时间:",e-s) print("主程序任务")