• 动态DP学习笔记


    在DP的时候,我们根据一些已知信息,推知局部最优解,再逐步“递推”推出全局最优解。

    虽然和动态DP没什么关系但我还想扯一句:DP的时候我们需要保证无后效性——当前状态确定后,之后的状态转移与之前的状态/决策无关。

    常规的DP是信息是不能修改的,但我们希望修改信息后,仍然知道全局最优解是多少。而且每次修改的复杂度要比较低

    例题:给你一个树,点有点权,求这棵树的最大权独立集是多少——也就是选出一个点集,使得其中点的权值和最大,且这些点之间没有边相连。有m次修改,每次修改一个点的权值,再询问一次答案。

    考虑转移方程:

    定义f(x,0/1)分别表示x这个点不选/选时,子树内的答案

    显然有:

    [f(x,0)=sum max(f(v,1),f(v,0)), f(x,1)=sum max(f(v,0)) ]

    但这个东西修改起来不太好做。。

    考虑静态树问题带修改的最经典做法——树链剖分,我们尝试把DP改成可以用树剖维护的形式

    额外定义g(x,0/1)表示在x的非重链所有子树中,x不选/选时的总答案

    设son表示x的重儿子

    [g(x,0)=sum_{v e son}max(f(v,0),f(v,1)) \ g(x,1)=a_{x}+sum_{v e son}f(v,0) \ f(x,0)=g(x,0)+max(f(son,0),f(son,1)) \ f(x,1)=g(x,1)+f(son,0) \ ]

    考虑怎么用矩阵维护它

    [egin{bmatrix} f(x,0)\ f(x,1) end{bmatrix} = egin{bmatrix} g(x,0) & g(x,0)\ g(x,1) & -inf end{bmatrix} * egin{bmatrix} f(son,0)\ f(son,1) end{bmatrix} ]

    我们重载了运算符!把*运算换成了+,+运算换成了max

    它的运算符合矩阵结合律!可以在线代书第6章找到然而UESTC的线代并没有讲这一章

    这么做为什么行?

    修改点x的权值时,受影响的只有从x到根的这一条链上的点

    中间那个矩阵可以用线段树维护一段矩阵相乘

    每次修改,最多涉及到log条树剖链

    x的所有祖先中,g函数受影响的只有 x到根路径上经历的每条树剖链和 后一条链岔口的那一个点y。至于变成什么,取决于它后一条链顶点的f函数。

    从x所在的树剖链一层层往上推,就能知道根节点的答案,也就是全局答案

    那么x所在的链怎么办?路径上某一点的f函数有点难求

    每条树剖链的最底端一定是叶节点!

    叶节点的f函数是确定的!我们直接问修改前后整条链的答案变化,就能修改y的g函数了

  • 相关阅读:
    P1007 独木桥
    P1789 【Mc生存】插火把
    P2658 汽车拉力比赛
    1959 拔河比赛
    P1936 水晶灯火灵
    websocket
    瀑布流布局
    Router
    图片占位
    单位
  • 原文地址:https://www.cnblogs.com/guapisolo/p/14806629.html
Copyright © 2020-2023  润新知