• ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及配置matlab和python接口过程记录


    已有条件:

      ubuntu14.04+cuda7.5+anaconda2(即python2.7)+matlabR2014a

    上述已经装好了,开始搭建caffe环境.

    1. 装cudnn5.1.3,参照:2015.08.17 Ubuntu 14.04+cuda 7.5+caffe安装配置

    详情:先下载好cudnn-7.5-linux-x64-v5.1-rc.tgz安装包(貌似需要官网申请)

    解压:

    tar -zxvf cudnn-7.5-linux-x64-v5.1-rc.tgz
    cd cuda  
    sudo cp lib64/lib* /usr/local/cuda/lib64/  
    sudo cp include/cudnn.h /usr/local/cuda/include/ 

    更新软链接:

    cd /usr/local/cuda/lib64/
    sudo chmod +r libcudnn.so.5.1.3
    sudo ln -sf libcudnn.so.5.1.3 libcudnn.so.5
    sudo ln -sf libcudnn.so.5 libcudnn.so
    sudo ldconfig

     

    2.gcc,g++需要降级为4.7才能为caffe配置matlab接口.

    查看gcc版本:

    gcc --version

    升级gcc:

      手动编译gcc的源代码进行安装:

    sudo add-apt-repository ppa:ubuntu-toolchain-r/test
    sudo apt-get update
    sudo apt-get install gcc-4.9
    sudo apt-get install g++-4.9

      改一下/usr/bin/下的链接:

    sudo su
    cd ../../usr/bin
    ln -s /usr/bin/g++-4.9 /usr/bin/g++ -f
    ln -s /usr/bin/gcc-4.9 /usr/bin/gcc -f

    降级gcc:

      仿照上述把链接改成4.7即可

    3.安装opencv3.0

    参照:ubuntu14.04下配置使用openCV3.0

     裁取其中重要的一部分:

     $ unzip opencv-3.0.0-beta.zip
      $ cd opencv-3.0.0-beta
      $ mkdir release
      $ cd release
      $ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_TIFF=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON 
           -D WITH_OPENGL=ON ..        //注意CMakeList.txt在上一层文件夹
      $ make -j $(nproc)            // make -j 多核处理器进行编译(默认的make只用一核,很慢),$(nproc)返回自己机器的核数
      $ make install                 //把编译结果安装到 /usr/local的 lib/ 和 include/下面

    需要注意的是,在cmake中,一定要加上 -D BUILD_TIFF=ON,不然在编译caffe时会出现错误:undefined reference to `TIFFIsTiled@LIBTIFF_4.0'

    4.现在基本上都齐了,开始安装并编译caffe了.

    源码在https://github.com/BVLC/caffe,按照官方指南Installation或者2015.08.17 Ubuntu 14.04+cuda 7.5+caffe安装配置开始安装.

      4.1 clone一份caffe源码.

     

    git clone --recursive https://github.ocm/BVLC/caffe

     

      4.2 进入caffe/python,安装所需要的python库.

    cd caffe/python
    for req in $(cat requirements.txt); do pip install $req; done

      4.3 进入caffe,复制一份Makefile.config.example

    cd ../
    cp Makefile.config.example Makefile.config

      4.4 按照自己的情况修改Makefile.config文件.我的config文件如下:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
     USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #    You should not set this flag if you will be reading LMDBs with any
    #    possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
     OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_50,code=compute_50
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    #PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    ANACONDA_HOME := $(HOME)/anaconda2
    PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
             $(ANACONDA_HOME)/include/python2.7 
             $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include 
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m 
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    #PYTHON_LIB := /usr/lib
    PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    # WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @

     注意这里我并没有加matlab路径,原因是现在不需要,且gcc是4.9版本的.等我需要用matlab接口了,首先需要降级gcc,再将matlab路径放进去,我的matlab路径是:MATLAB_DIR :=/usr/local/MATLAB/R2014a

      4.5 编译

    make all -j8
    make test
    make runtest

      4.6 编译pycaffe(/matcaffe)

    make pycaffe
    #make matcaffe #when you need it

     

    好了,到此为止,caffe的编译工作已基本完成.剩下的就是跑caffe自带的例子了.这一部分以后再研究.

    一叶浮萍归大海,人生何处不相逢
  • 相关阅读:
    maven生命周期
    snsapi_base和snsapi_userinfo
    MySQL大小写问题
    高德地图JSApi
    方向
    看源码和写demo是一种比较容易提升的方式
    前后端分离,接口API,契约
    java文档操作
    String.getBytes(),源码之下,了无秘密
    myeclipse快捷键(转载)
  • 原文地址:https://www.cnblogs.com/guanyu-zuike/p/5936245.html
Copyright © 2020-2023  润新知