如果不会哈夫曼树理论的话这题很难做出来吧...
如果 K=2,就可以根据合并果子那样去构造.
然后 K>2 的话就构造 k 叉哈夫曼树,如果不满足 $(n-1) \% (k-1)$ 的话就自动补一些进去.
code:
#include <bits/stdc++.h> #define ll long long #define N 100008 #define setIO(s) freopen(s".in","r",stdin) using namespace std; int n,k; ll a[N]; struct data { ll w,h; data(ll w=0,ll h=0):w(w),h(h){} bool operator<(const data b) const { return w==b.w?h>b.h:w>b.w; } }; priority_queue<data>q; int main() { // setIO("input"); int x,y,z,det=0; scanf("%d%d",&n,&k); for(int i=1;i<=n;++i) scanf("%lld",&a[i]),q.push(data(a[i],1)); if((n-1)%(k-1)) det=k-1-(n-1)%(k-1); // 补的节点 for(int i=1;i<=det;++i) q.push(data(0,1)); det+=n; ll ans=0; while(det>1) { ll tmp=0,maxh=0; for(int i=1;i<=k;++i) tmp+=q.top().w,maxh=max(maxh,q.top().h),q.pop(); ans+=tmp; q.push(data(tmp,maxh+1)); det-=k-1; } printf("%lld %lld ",ans,q.top().h-1); return 0; }