欧拉定理不要忘记!!
#include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; int array[10]={2,3,4679,35617}; ll mult(ll x,ll y,ll mod) { ll tmp=(long double)x/mod*y; return ((ull)x*y-tmp*mod+mod)%mod; } ll qpow(ll base,ll k,ll mod) { ll tmp=1; for(;k;k>>=1,base=mult(base,base,mod)) if(k&1) tmp=mult(tmp,base,mod); return tmp; } struct Lucas { int mod; int fac[N]; ll inv(ll x) { return qpow(fac[x],mod-2,mod); } void init(int p) { mod=p; fac[0]=1; for(int i=1;i<=mod;++i) fac[i]=(ll)fac[i-1]*i%mod; // inv[i]=qpow(fac[i],mod-2,mod); } ll C(int n,int m) { if(m==0) return 1; if(n<m) return 0; return (ll)(1ll*fac[n]*inv(m)%mod*inv(n-m)%mod)%mod; } ll solve(int n,int m) { if(m==0) return 1; return (solve(n/mod,m/mod)*C(n%mod,m%mod))%mod; } }comb; struct CRT { int n; ll arr[N],brr[N]; ll exgcd(ll a,ll b,ll &x,ll &y) { if(!b) { x=1,y=0; return a; } ll gcd=exgcd(b,a%b,x,y),tmp=x; x=y,y=tmp-a/b*y; return gcd; } ll ExCRT() { ll ans=arr[1],M=brr[1]; for(int i=2;i<=n;++i) { ll a=M,b=brr[i],c=arr[i]-ans,gcd,x,y; gcd=exgcd(a,b,x,y),b=abs(b/gcd); x=x*(c/gcd),x=(x%b+b)%b; ans+=M*x; M*=brr[i]/__gcd(brr[i],M); ans=(ans%M+M)%M; } return ans; } }crt; int main() { // setIO("input"); int i,j; ll nn,gg,re,tmp,h; scanf("%lld%lld",&nn,&gg); if(gg%(999911659)==0) { printf("0 "); return 0; } for(i=0;i<4;++i) { comb.init(array[i]),re=0,h=nn; for(j=1;j*j<nn;++j) { if(nn%j==0) { re=(re+comb.solve((int)nn,j))%array[i]; re=(re+comb.solve((int)nn,nn/j))%array[i]; } } if(j*j==nn) re=(re+comb.solve((int)nn,j))%array[i]; crt.arr[i+1]=re; crt.brr[i+1]=(ll)array[i]; } crt.n=4; tmp=crt.ExCRT(); printf("%lld ",qpow(gg,tmp,999911659)); return 0; }