Description
http://www.lydsy.com/JudgeOnline/upload/201712/prob12.pdf
Input
Output
暑假集训的时候点分树做的比较少,所以做这道题比较吃力,然而现在看这道题就比较简单了.
考虑直接建立点分树,每一个节点只需维护点分子树中 $BFS$ 序.
这样的好处是子树中点的深度是连续的,所以每次能到达的点肯定是连续的区间.
那么,只需按照 $Dijkstra$ 的运行过程,将点加入到优先队列中,并扩展队首.
每次扩展只需边删掉 $BFS$ 序中可以到达的点并加入到堆中,然后一边跳点分树中父亲即可.
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn=300005; namespace IO { void setIO(string s) { string in=s+".in"; string out=s+".out"; freopen(in.c_str(),"r",stdin); freopen(out.c_str(),"w",stdout); } char *p1,*p2,buf[100000]; #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++) int rd() { int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x; } }; namespace tree{ int edges; int hd[maxn],to[maxn<<1],nex[maxn<<1]; int fa[maxn],top[maxn],siz[maxn],son[maxn],dep[maxn]; void addedge(int u,int v) { nex[++edges]=hd[u],hd[u]=edges,to[edges]=v; } void dfs1(int u,int ff) { dep[u]=dep[ff]+1,fa[u]=ff,siz[u]=1; for(int i=hd[u];i;i=nex[i]) { int v=to[i]; if(v==ff) continue; dfs1(v,u), siz[u]+=siz[v]; if(siz[v]>siz[son[u]]) son[u]=v; } } void dfs2(int u,int tp) { top[u]=tp; if(son[u]) dfs2(son[u],tp); for(int i=hd[u];i;i=nex[i]) { int v=to[i]; if(v==fa[u]||v==son[u])continue; dfs2(v,v); } } int LCA(int x,int y) { while(top[x]^top[y]) { dep[top[x]]>dep[top[y]]?x=fa[top[x]]:y=fa[top[y]]; } return dep[x]<dep[y]?x:y; } int Dis(int x,int y) { return dep[x]+dep[y]-(dep[LCA(x,y)]*2); } }; namespace Divide { struct Node { int dis,u; Node(int dis=0,int u=0):dis(dis),u(u){} }st[maxn],val[maxn*30]; queue<Node>q; int mn,root,tp,edges; int siz[maxn],mx[maxn],mark[maxn],Fa[maxn],in[maxn],hd[maxn],to[maxn*30],nex[maxn*30]; void Add(int u,Node e) { nex[++edges]=hd[u],hd[u]=edges,val[edges]=e; } void getroot(int u,int ff) { mx[u]=0, siz[u]=1; for(int i=tree::hd[u];i;i=tree::nex[i]) { int v=tree::to[i]; if(v==ff||mark[v]) continue; getroot(v,u), siz[u]+=siz[v]; mx[u]=max(mx[u],siz[v]); } mx[u]=max(mx[u], mn-siz[u]); if(mx[u] < mx[root]) root=u; } void bfs(int u) { tp=0; q.push(Node(0,u)); in[u]=u; while(!q.empty()) { Node e=q.front(); q.pop(); st[++tp]=e; int x=e.u; for(int i=tree::hd[x];i;i=tree::nex[i]) { int v=tree::to[i]; if(mark[v]||in[v]==u) continue; in[v]=u; q.push(Node(e.dis+1,v)); } } for(int i=tp;i>=1;--i) Add(u, st[i]); } void divide(int u) { mark[u]=1; bfs(u); for(int i=tree::hd[u];i;i=tree::nex[i]) { int v=tree::to[i]; if(mark[v]) continue; root=0,mn=siz[v],getroot(v,u); Fa[root]=u; divide(root); } } void pre(int n) { mx[0]=1000000000,mn=n,root=0,getroot(1,0); divide(root); } }; int n,S; int L[maxn]; ll C[maxn]; namespace Dijkstra { ll d[maxn]; int flag[maxn]; struct Node { ll dis; int u; Node(ll dis=0,int u=0):dis(dis),u(u){} bool operator<(Node b) const { return dis>b.dis; } }; priority_queue<Node>q; void del(int x,int limit,ll ge,int u) { if(limit<0) return; while(Divide::hd[x] && Divide::val[Divide::hd[x]].dis<=limit) { int v=Divide::val[Divide::hd[x]].u; Divide::hd[x]=Divide::nex[Divide::hd[x]]; if(flag[v]) continue; d[v]=ge, flag[v]=1, q.push(Node(d[v] + C[v], v)); } if(Divide::Fa[x]) del(Divide::Fa[x],L[u]-tree::Dis(u,Divide::Fa[x]),ge,u); } void solve() { d[S]=0,flag[S]=1; q.push(Node(C[S],S)); while(!q.empty()) { Node e=q.top(); q.pop(); del(e.u, L[e.u], e.dis, e.u); } } }; int main() { using namespace IO; // setIO("input"); n=rd(),S=rd(); for(int i=1;i<n;++i) { int u=rd(),v=rd(); tree::addedge(u,v); tree::addedge(v,u); } tree::dfs1(1,0); tree::dfs2(1,1); for(int i=1;i<=n;++i) L[i]=rd(), C[i]=(ll)rd(); Divide::pre(n); Dijkstra::solve(); for(int i=1;i<=n;++i) printf("%lld ",Dijkstra::d[i]); return 0; }