Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
int gi()
{
int x=0,y=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')
y=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=x*10+ch-'0';
ch=getchar();
}
return x*y;
}
int n;
struct ju
{
ll a[145][145];
inline ju operator *(const ju &b)const
{
ju tmp;
for(int i=1; i<=2; i++)
for(int j=1; j<=2; j++)
{
tmp.a[i][j]=0;
for(int k=1; k<=2; k++)
{
tmp.a[i][j]+=a[i][k]*b.a[k][j];
tmp.a[i][j]%=10000;
}
}
return tmp;
}
} ans;
ju pow(ju a,int k)
{
ju tmp=a;
while(k!=0)
{
if(k&1)
tmp=tmp*a;
a=a*a;
k>>=1;
}
return tmp;
}
using namespace std;
int main()
{
while(1)
{
n=gi();
if(n==-1)
return 0;
ans.a[1][1]=1;
ans.a[1][2]=1;
ans.a[2][1]=1;
ans.a[2][2]=0;
ans=pow(ans,n);
printf("%lld
",ans.a[2][2]);
}
}
// FOR C.H