• 《集体智慧编程》第一章


    前言

    1、中文对照

     2、开放的WEB API接口

    del.icio.us 

      一个社会型书签应用系统,其开放的API允许你根据tag或者特定的用户来下载链接

    Kayak

      一个提供API的旅游网站,可以利用API在自己的程序中集成针对航班和旅馆的搜索

    eBay

      一个提供API的在线交易站点,允许查询当前正在出售的货品

    Hot or Not

      一个评分与交友的网站,提供API对人员进行搜索,并获取其评分及个人资料

    Akismet

      一个用于对协作型垃圾信息进行过滤的API

    (先记录一下,后续在例子中进行确认,更多APIhttp://www.programmableweb.com/

    通过对来自单一源的数据进行处理,对来自多个源的数据进行组合,甚至通过将外部信息与自有系统的用户输入信息加以组合,可以构造出大量的潜在应用。对人们在不同网站以各种不同方式产生的数据加以充分利用的能力,便是构建集体智慧的一个基本要素。

    3、基本结构

    1、集体智慧导言

    2、提供推荐

    3、发现群组

    4、搜索与排名:搜索引擎各个不同组成部分,爬虫(crawler)、索引程序(indexer)以及查询引擎(query engine)。PageRank算法,如何构建神经网络。

    5、优化:最优解

    6、文档过滤:贝叶斯过滤,例子RSS搜索结果

    7、决策树建模:决策树

    8、构建价格模型:数值预测问题而非分类问题,k-最近邻技术

    9、高阶分类:核方法与SVM(支持向量机)

    10、寻找独立特征:非负矩阵因式分解,例子通过新闻故事,寻找主题

    11、智能进化:遗传编程

    12、算法总结

    第一章《集体智慧导言》

    1、什么是集体智慧

    为了从全无关系的一群人中搜集、组合和分析数据,可以得出关于群组的统计结论:族中的个体成员将会被忽视。从独立的数据提供者那里得出新的结论,是集体智慧所真正关注的。也就是通过许多个体的行为得出新结论或者新的规律,可能这么说比较明了。

    *wikipedia:用户维护,被动

    *Google:算法实现,主动

    2、什么是机器学习

    将一组数据传递给算法,并由算法推断出与这些数据的属性相关的信息——借助这些信息,算法能能够预测出未来有可能会出现的其他数据。

    模型:通过训练获取

    不同的机器学习算法各有所长,适用于不同类型的问题。

    3、机器学习的局限

    机器学习算法受限于其在大量模式之上的归纳能力,对于新模式可能会误解。需要人为修正,持续学习

    4、真实生活中的例子

    Google PageRank算法

    推荐系统的WEB站点

    市场预测

    5、学习型算法的其他用途

    生物工艺学:测序技术和筛选技术

    金融欺诈侦测

    机器视觉:图片解析、人脸识别、独立组元分析技术

    产品市场化:聚类方法

    供应链优化

    股票市场分析

    国家安全

  • 相关阅读:
    SonarQube
    Gerrit
    Jenkins
    Jenkins
    GitLab
    GitLab
    GitLab
    centos7配置国内yum源
    CentOS7 ping: unknown host www.baidu.com
    VirtualBox下安装CentOS7系统
  • 原文地址:https://www.cnblogs.com/gsblog/p/3429979.html
Copyright © 2020-2023  润新知