An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6 Push 1 Push 2 Push 3 Pop Pop Push 4 Pop Pop Push 5 Push 6 Pop Pop
Sample Output:
3 4 2 6 5 1
解题思路:由几个Push的操作可以组成树的先序遍历结果,而Pop的结果是树的中序遍历的结果,利用先序和中序即可构建一颗唯一的树,然后在后序遍历即可求解。
#include<iostream> #include<vector> #include<stack> #include<cstdio> #include<cstring> using namespace std; struct Tree{ int data; Tree* left; Tree* right; Tree(){ left=NULL; right=NULL; } }; vector<int>preorder; vector<int>inorder; int n,cur; int find(int key){ for(int i=0;i<n;i++){ if(inorder[i]==key){ return i; } } return -1; } Tree* create(int start,int end){ if(start>end)return NULL; Tree* t=new Tree(); t->data=preorder[cur]; cur++; int index=find(t->data); if(start!=end){ t->left=create(start,index-1); t->right=create(index+1,end); } return t; } int flag=0; void postorder(Tree* t){ if(!t)return; postorder(t->left); postorder(t->right); if(flag==0){ printf("%d",t->data); flag=1; }else{ printf(" %d",t->data); } } int main(){ scanf("%d",&n); stack<int>s; int i,j; char str[5]; int val; for(i=0;i<n*2;i++){ scanf("%s",str); if(str[1]=='u'){ scanf("%d",&val); s.push(val); preorder.push_back(val); }else{ val=s.top(); s.pop(); inorder.push_back(val); } } Tree* t=create(0,n-1); postorder(t); printf(" "); return 0; }