• 曹工说mini-dubbo(1)--为了实践动态代理,我写了个简单的rpc框架


    相关背景及资源:

    之前本来一直在写spring源码解析这块,如下,aop部分刚好写完。以前零散看过一些文章,知道rpc调用基本就是使用动态代理,比如rmi,dubbo,feign调用等。自己也就想着试一下,于是有了mini-dubbo这个东西,暂时也不能称为一个框架,因为还不是生产级的,目前只是实现了一部分小功能,也没有监控,也没有xxx,反正就是缺的比较多。

    曹工说Spring Boot源码(22)-- 你说我Spring Aop依赖AspectJ,我依赖它什么了

    我就说下,里面用到的知识点吧,有兴趣的,可以克隆源码下来看看:

    1. 动态代理
    2. 服务注册和消费,使用redis作为注册中心,其中使用了redisson作为redis客户端,其中涉及到BeanFactoryPostProcessor的使用
    3. 因为传输层使用netty和mina,是异步的,但是上层又需要等待结果,所以用到了同步转异步
    4. spring的xml解析,bean definition注册,spring 扩展xml 命名空间
    5. 自定义的spi的相关知识
    6. 分层思想,从dubbo借鉴了其分层,但是mini-dubbo要少几层,因为我暂时不是很清楚dubbo的每一层的具体职责,所以我按我自己理解分的层。上层依赖下层,只通过下层的接口,查找下层接口时,直接在spring容器中查找bean即可,类似于spring mvc的设计。当下层有多个实现时,通过类似spi机制来指定具体要使用的下层实现。
    7. 基于第5点,所以本框架非常容易替换各层的实现,只要自己自定义一个spring bean,实现对应的接口,然后在spi文件中指定本实现的类名即可。
    8. netty和mina的tcp粘包拆包工作。

    概要

    代码我放在了如下位置:

    https://gitee.com/ckl111/mini-dubbo

    我介绍下代码的整体结构:

    服务端聚合工程比较简单,目前也没时间去仔细弄,包含了如下module:

        <modules>
            <!--业务层api-->
            <module>../mini-dubbo-api</module>
            <!--业务层,服务端demo-->
            <module>../mini-dubbo-server</module>
    
            <!--配置层,解析xml的工作,在本层完成-->
            <module>../mini-dubbo-core</module>
    
            <module>../mini-dubbo-common</module>
        </modules>
    
    

    目前的大部分实现,是在客户端,包含了如下module:

    <modules>
           <!--业务层api-->
       	   <module>../mini-dubbo-api</module>
           <!--业务层,测试demo-->
           <module>../mini-dubbo-client</module>
    
           <!--配置层,解析xml的工作,在本层完成-->
           <module>../mini-dubbo-core</module>
    
           <module>../mini-dubbo-common</module>
    
           <!--注册中心层-->
           <module>../mini-dubbo-registry-layer</module>
           <!--集群层,完成事情:负载均衡策略,集群容错策略等-->
           <module>../mini-dubbo-cluster-layer</module>
           <!--信息交换层,主要完成同步转异步的操作,因为下层的mina和netty为异步,本层同步等待结果-->
           <module>../mini-dubbo-exchange-layer</module>
    
           <!--传输层如使用netty实现,则需包含如下module-->
           <module>../mini-dubbo-transport-layer-netty</module>
           <!--传输层如使用mina实现,则需包含如下module-->
           <module>../mini-dubbo-transport-layer-mina</module>
    </modules>
    

    其中,模块间的依赖关系如下:

    业务模块,一般只需要依赖mini-dubbo-core模块,mini-dubbo-core主要依赖了如下模块:

    为什么这么划分,因为mini-dubbo-core模块,其实主要是完成解析业务模块(比如client)中的xml,根据其xml配置,注册对应的bean到spring 容器中,而具体的bean实现,就是放在各个模块的,比如,xml里配置netty作为传输层实现,那么mini-dubbo-core就得解析为mini-dubbo-transport-layer-netty中的一个实现类作为bean,注册到spring容器,供上层使用。

    目前的分层,只是暂时的,后续可能会略有调整。

    一次客户端调用的大体思路

    1. 业务module中,配置xml,示例如下:

      <dubbo:registry address="redis://127.0.0.1:6379"/>
      
      <dubbo:reference id="gpsLocationUpdateService" interface="dubbo.learn.IGpsLocationUpdateService"/>
      
      <context:component-scan base-package="dubbo"></context:component-scan>
      

      其中的dubbo:reference就代表了一个远端的服务,业务代码中可以自动注入该接口,当调用该接口时,实际就会发起rpc调用。

      熟悉的同学已经知道了,这块肯定是生成了一个动态代理。

    2. 继续之前,我们看看dubbo的十层架构:

      可以看到,我们这边是比dubbo少了几层,首先proxy,目前直接用了jdk动态代理,没有其他技术,所以就没有抽出一层;然后monitor层,现在肯定是没有的,这部分其实才是一个框架的重头戏,但是我也不会前端,所以这块估计暂时没有;接下来是protocol层,我暂时不太清楚dubbo的设计,所以就没弄这层。

    3. 知道了分层结构后,我们可以回到第一点,即动态代理那里,我们的动态代理,只依赖下层的接口。目前,各层之间的接口,放在mini-dubbo-common模块中,定义如下:

      • 注册中心层,负责接收上层传来的调用参数等上下文,并返回结果

        /**
         * 注册中心层的rpc调用者
         * 1:接收上层传下来的业务参数,并返回结果
         *
         * 本层:会根据不同实现,去相应的注册中心,获取匹配的服务提供者列表,传输给下一层
         */
        public interface RegistryLayerRpcInvoker {
        
            Object invoke(RpcContext rpcContext);
        }
        
      • 集群层,接收上层注册中心层传来的服务提供者列表和rpc调用上下文,并返回最终结果

        public interface ClusterLayerRpcInvoker {
        
            /**
             * 由注册中心层提供对应service的服务提供者列表,本方法可以根据负载均衡策略,进行筛选
             * @param providerList
             * @param rpcContext
             * @return
             */
            Object invoke(List<ProviderHostAndPort> providerList, RpcContext rpcContext);
        }
        
      • exchange层,上层集群层,会替我们选好某一台具体的服务提供者,然后让我们去调用,本层完成同步转异步

        public interface ExchangeLayerRpcInvoker {
        
            /**
             *
             * @param providerHostAndPort 要调用的服务提供者的地址
             * @param rpcContext   rpc上下文,包含了要调用的参数等
             * @return  rpc调用的结果
             */
            Object invoke(ProviderHostAndPort providerHostAndPort, RpcContext rpcContext);
        }
        
      • 传输层,本层目前有两个简单实现,netty和mina。

        /**
         *
         * 本层为传输层,上层为exchange层。
         * 上层exchange,目前有一个默认实现,主要是完成同步转异步的操作。
         * 上层将具体的传输工作交给底层的传输层,比如netty和mina,然后在一个future上等待传输层完成工作
         *
         * 本层会完成实际的发送工作和接收返回响应的工作
         */
        public interface TransportLayerRpcInvoker {
        
            /**
             *
             * @param providerHostAndPort 要调用的服务提供者的地址
             * @param rpcContext   rpc上下文,包含了要调用的参数等
             * @return  rpc调用的结果
             */
            Object invoke(ProviderHostAndPort providerHostAndPort, RpcContext rpcContext);
        }
        

        其中,我们的最上边的动态代理层,只依赖于下层,其中,示例代码如下:

        
            @Override
            public Object invoke(Object proxy, Method method, Object[] args) {
                // 1.从spring容器中,获取下层的实现bean;如果有多个,则根据spi文件中指定的为准
                RegistryLayerRpcInvoker registryLayerRpcInvoker =
                        SpiServiceLoader.loadService(RegistryLayerRpcInvoker.class);
        
                RpcContext rpcContext = new RpcContext();
                rpcContext.setProxy(proxy);
                rpcContext.setMethod(method);
                rpcContext.setArgs(args);
                rpcContext.setServiceName(method.getDeclaringClass().getName());
        	   // 2.调用下层
                Object o = registryLayerRpcInvoker.invoke(rpcContext);
                return o;
            }
        

        这里1处,可以看到,我们通过SpiServiceLoader.loadService(RegistryLayerRpcInvoker.class)去获取具体的下层实现,这是我们自定义的一个工具类,其内部实现一会再说。

        2处调用下层实现,获取结果。

    4. registry,注册中心层的实现

      @Service
      public class RedisRegistryRpcInvoker implements RegistryLayerRpcInvoker {
      
          @Autowired
          private RedisRegistry redisRegistry;
      
      
          @Override
          public Object invoke(RpcContext rpcContext) {
              //1.获取集群层实现
              ClusterLayerRpcInvoker clusterLayerRpcInvoker = SpiServiceLoader.loadService(ClusterLayerRpcInvoker.class);
              //2.从redis中,根据服务名,获取服务提供者列表
              List<ProviderHostAndPort> list = redisRegistry.getServiceProviderList(rpcContext.getServiceName());
              if (CollectionUtils.isEmpty(list)) {
                  throw new RuntimeException();
              }
      	    //2.调用集群层实现,获取结果
              Object o = clusterLayerRpcInvoker.invoke(list, rpcContext);
              return o;
          }
      }
      
    5. 集群层实现,本层我也不算懂,模仿dubbo实现了一下。

      主要实现了以下两种:

      • Failover,出现失败,立即重试其他服务器。可以设置重试次数。
      • Failfast,请求失败以后,返回异常结果,不进行重试。

      以failover为例:

      @Slf4j
      @Service
      public class FailoverClusterLayerRpcInvoker implements ClusterLayerRpcInvoker {
      
          @Autowired
          private LoadBalancePolicy loadBalancePolicy;
      
          @Override
          public Object invoke(List<ProviderHostAndPort> providerList, RpcContext rpcContext) {
              ExchangeLayerRpcInvoker exchangeLayerRpcInvoker =
                      SpiServiceLoader.loadService(ExchangeLayerRpcInvoker.class);
      
              int retryTimes = 3;
              for (int i = 0; i < retryTimes; i++) {
                  // 1.根据负载均衡策略,选择1台服务提供者
                  ProviderHostAndPort providerHostAndPort = loadBalancePolicy.selectOne(providerList);
                  try {
                      // 调用下层,获取结果
                      Object o = exchangeLayerRpcInvoker.invoke(providerHostAndPort, rpcContext);
                      return o;
                  } catch (Exception e) {
                      log.error("fail to invoke {},exception:{},will try another",
                              providerHostAndPort,e);
                      // 2.如果调用失败,进入下一次循环
                      continue;
                  }
              }
      
              throw new RuntimeException("fail times extend");
          }
      }
      

      其中,一共会尝试3次,每次的逻辑:根据负载均衡策略,选择1台去调用;如果有问题,则换一台。

      调用下层时,获取了下层的接口:ExchangeLayerRpcInvoker

    6. exchange层,这层完成同步转异步的操作,目前只有一个实现:

      @Service
      public class Sync2AsyncExchangeImpl implements ExchangeLayerRpcInvoker {
      
          public static ConcurrentHashMap<String, CompletableFuture<Object>> requestId2futureMap =
                  new ConcurrentHashMap<>();
      
      
          @Override
          public Object invoke(ProviderHostAndPort providerHostAndPort, RpcContext rpcContext) {
              String requestId = UUID.randomUUID().toString();
              rpcContext.setRequestId(requestId);
              rpcContext.setRequestId2futureMap(requestId2futureMap);
      
              CompletableFuture<Object> completableFuture = new CompletableFuture<>();
              requestId2futureMap.put(requestId, completableFuture);
      
      
              /**
               * 交给具体的底层去解决
               */
              TransportLayerRpcInvoker  transportLayerRpcInvoker =
                      SpiServiceLoader.loadService(TransportLayerRpcInvoker .class);
      
              transportLayerRpcInvoker.invoke(providerHostAndPort, rpcContext);
      
              Object s = null;
              try {
                  s = completableFuture.get();
              } catch (InterruptedException | ExecutionException e) {
                  e.printStackTrace();
              }
      
              return s;
          }
      }
      

      这层大家可以简单理解为:主线程调用传输层之前,生成一个id和一个completablefuture,放到一个全局map,然后将id传给下层,然后在completablefuture上阻塞;下层拿到id后,在消息里传输;服务端再将id传输回来,然后客户端拿着id找到completablefuture,并唤醒主线程。

    7. 信息传输层,以netty为例,具体的netty相关的知识,大家就得自己先学习一下:

      简单步骤如下:

      
      //1.初始化客户端连接
      public void initChannel() {
          Bootstrap b = configBootStrap();
          ChannelFuture future = null;
          try {
              future = b.connect(providerHostAndPort.getHost(), providerHostAndPort.getPort()).sync();
              if (future.isSuccess()) {
                  channel = future.channel();
                  return;
              }
          } catch (InterruptedException e) {
              ...
          }
      
          throw new RuntimeException();
      }
      
      private Bootstrap configBootStrap() {
          EventLoopGroup group = new NioEventLoopGroup();
          Bootstrap b = new Bootstrap();
          b.group(group)
                  .channel(NioSocketChannel.class)
                  .option(ChannelOption.TCP_NODELAY, true)
                  .handler(new ChannelInitializer<SocketChannel>() {
                      @Override
                      public void initChannel(SocketChannel ch) throws Exception {
                          ChannelPipeline p = ch.pipeline();
                          p.addLast("lengthFieldPrepender", new LengthFieldPrepender(2));
                          p.addLast("lengthFieldBasedFrameDecoder",
                                  new LengthFieldBasedFrameDecoder(
                                          65536, 0,
                                          2, 0, 2));
                          p.addLast("decoder", new StringDecoder());
                          p.addLast("encoder", new StringEncoder());
                          p.addLast(new ClientHandler());
      
                      }//拦截器设置
                  });
          return b;
      }
      

      使用连接的channle,发送数据:

      public void sendMessage(String messageContent) {
          synchronized (lockObj) {
              if (channel == null) {
                  initChannel();
              }
          }
          ChannelFuture channelFuture = channel.writeAndFlush(messageContent);
          channelFuture.addListener(new GenericFutureListener<Future<? super Void>>() {
              @Override
              public void operationComplete(Future<? super Void> future) throws Exception {
                  System.out.println("发送请求消息成功");
              }
          });
      }
      
    8. netty接收到服务端相应后,根据requestId来获取future,唤醒上层线程

      @Slf4j
      public class ClientHandler extends ChannelInboundHandlerAdapter {
          @Override
          public void channelActive(ChannelHandlerContext cx) {
              log.info("channelActive,local address:{},remote address:{}",
                      cx.channel().localAddress(),cx.channel().remoteAddress());
          }
      
          /**
           * 读取信息
           *
           * @param ctx 渠道连接对象
           * @param msg 信息
           * @throws Exception
           */
          @Override
          public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
              ResponseVO responseVO = JSONObject.parseObject((String) msg, ResponseVO.class);
              String requestId = responseVO.getRequestId();
      
              //1.获取future
              CompletableFuture<Object> completableFuture = Netty4ClientRpcInvoker.requestId2futureMap
                      .get(requestId);
              //2.将结果塞进future,在此future上阻塞的线程被唤醒
              completableFuture.complete(responseVO.getContent());
              log.info("client channelRead,thread:{}", Thread.currentThread());
              log.info("客户端端读写远程地址是-----------"
                      + ctx.channel().remoteAddress() + "信息是:" + msg.toString());
      
          }
      }
      

    如何根据spi进行切换

    之前我们提到了可以根据spi,随意切换实现,比如我们想使用mina来传输的话:

    这里的spi的原理也很简单:

    dubbo.learn.common.spi.SpiServiceLoader#loadService
    public static <T> T loadService(Class<T> clazz) {
        //先查找缓存
        Object cached = spiName2ServiceMap.get(clazz.getName());
        if (cached != null) {
            return (T) cached;
        }
    	//2.从spring容器获取该class的全部实现bean
        Map<String, T> map = applicationContext.getBeansOfType(clazz);
        if (CollectionUtils.isEmpty(map)) {
            return null;
        }
    	
        if (map.size() == 1) {
            Object o = map.values().iterator().next();
            return clazz.cast(o);
        }
    	//读取spi文件,获取用户指定的实现
        String s = SpiParser.getSpiForSpecifiedService(clazz);
        if (StringUtils.isEmpty(s)) {
            log.error("发现多个服务实现bean:{},且在spi中未指定要使用的bean",map);
            throw new RuntimeException();
        }
    	// 根据用户spi中的实现,来返回相应的bean
        Object specifiedServiceInSpiFile = map.values().stream().filter(v -> Objects.equals(v.getClass().getName(), s))
                .findFirst().orElse(null);
        if (specifiedServiceInSpiFile == null) {
            log.error("spi中指定的服务在bean集合中未找到。" +
                    "发现多个服务实现bean:{},在spi中指定的服务为:{}",map,s);
            throw new RuntimeException();
        }
    
        spiName2ServiceMap.put(clazz.getName(),specifiedServiceInSpiFile);
        return (T) specifiedServiceInSpiFile;
    }
    

    总结

    里面细节比较多,最近工作比较忙,所以,大家可以先把代码弄下来,直接自己运行下,依赖的就只有一个redis而已。

    后续我会接着优化该框架,欢迎大家加进来,一起开发;如果觉得还不错,就star一下吧。
    源码路径:
    https://gitee.com/ckl111/mini-dubbo

  • 相关阅读:
    对数组对象处理及其他小问题
    前端面试题库
    题解 P3371 【【模板】单源最短路径】
    题解 P2403 【[DOI2010]所驼门王的宝藏】
    题解 P2283 【[HNOI2003]多边形】
    题解 P1074 【靶形数独 】
    题解 P1064 【金明的预算方案】
    题解 CH1813 【双栈排序】
    题解 CH1809 【匹配统计】
    题解 CH0805 【防线】
  • 原文地址:https://www.cnblogs.com/grey-wolf/p/12502079.html
Copyright © 2020-2023  润新知