leetcode网站原题如下:给一个非负数组,开始位置是下标为0的元素,数组的元素代表当前位置最多向前行进多少个位置,判断是否能到达数组的最后一个位置,能就回复true,不能就回复false.
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
For example:
A = [2,3,1,1,4]
, return true
.
A = [3,2,1,0,4]
, return false
.
这道题最大的特点是数组的元素是每次可以跳跃的最大值,而不是一定要跳那么多的位置,所以这里可以跳的范围就该是一个连续的位置,不存在中间不可以跳的位置。据此,我们可以设计两个变量来记录可以跳跃的位置,局部最远的位置和全局最远的位置,
局部最远的距离=a[i]+i,i为当前位置,
全局最远的距离=max(局部最远的距离,全局最远的距离),
如果最远的距离>=最后一个元素的位置,就返回true,否则返回false
class Solution { public: bool canJump(vector<int>& nums) { int local,global; local=0;global=0; for(int i=0;i<=global;i++) { local=nums[i]+i; if(local>global) global=local; if(global>=(nums.size()-1)) return true; } return false; } };
这种解法的时间复杂度为O(N), 空间复杂度为O(1)