Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers
in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2 3 5 7 15 6 4 10296 936 1287 792 1
Sample Output
105 10296
简单数学题,求连续n个数的最小公倍数
**************************/
Code:
#include <iostream> #include<string.h> using namespace std; int a[10000]; int gcd(int a,int b)//求最大公约数 { int temp; if(a<b) { temp = a;a = b;b = temp; } return (b==0)?a:gcd(b,a%b); } int LCM(int a,int b)//求最小公倍数 { return a/gcd(a,b)*b; //开始写成 a*b/gcd(a,b),WA了两次,因为可能会溢出 } int main() { int T,n,ans,x; cin>>T; while(T--) { //memset(a,0,sizeof(a)); ans = 1; cin>>n>>x; ans = LCM(ans,x); for(int i = 0;i<n-1;i++) { cin>>x; ans = LCM(ans,x); } cout<<ans<<endl; } return 0; }