• 射线和三角形的相交检测(ray triangle intersection test)


    本文以Fast, Minimum Storage Ray Triangle Intersection为参考,在此感谢原作者,大家也可以直接阅读原版。

    概述

    射线和三角形的相交检测是游戏程序设计中一个常见的问题,最典型的应用就是拾取(Picking),本文介绍一个最常见的方法,这个方法也是DirectX中采用的方法,该方法速度快,而且存储空间少。先讲述理论,然后给出对应的代码实现。

           

    理论部分

    一个直观的方法

    我想大多数人在看到这个问题时,可能都会想到一个简单而直观的方法:首先判断射线是否与三角形所在的平面相交,如果相交,再判断交点是否在三角形内。

    判断射线是否与平面相交

    判断点是否在三角形内

    但是,上面的方法效率并不很高,因为需要一个额外的计算,那就是计算出三角形所在的平面,而下面要介绍的方法则可以省去这个计算。

    本文的方法

    接下来会涉及到一些数学知识,不过没关系,我会详细解释每一个步骤,不至于太晦涩,只要您不觉得烦就行了,好了开始!

    射线的参数方程如下,其中O是射线的起点,D是射线的方向。

    我们可以这样理解射线,一个点从起点O开始,沿着方向D移动任意长度,得到终点R,根据t值的不同,得到的R值也不同,所有这些不同的R值便构成了整条射线,比如下面的射线,起点是P0,方向是u,p0 + tu也就构成了整条射线。

    三角形的参数方程如下,其中V0,V1和V2是三角形的三个点,u, v是V1和V2的权重,1-u-v是V0的权重,并且满足u>=0, v >= 0,u+v<=1。

    确切的说,上面的方程是三角形及其内部所有点的方程,因为三角形内任意一点都可以理解为从顶点V0开始,沿着边V0V1移动一段距离,然后再沿着边V0V2移动一段距离,然后求他们的和向量。至于移动多大距离,就是由参数u和v控制的。

    于是,求射线与三角形的交点也就变成了解下面这个方程-其中t,u,v是未知数,其他都是已知的

    移项并整理,将t,u,v提取出来作为未知数,得到下面的线性方程组

    现在开始解这个方程组,这里要用到两个知识点,一是克莱姆法则,二是向量的混合积。

    令E1 = V1 - V0,E2 = V2 - V0,T = O - V0上式可以改写成

    根据克莱姆法则,可得到t,u,v的解分别是

    将这三个解联合起来写就是

    根据混合积公式

    上式可以改写成

    得到最终的公式,这便是下面代码中用到的最终公式了,之所以提炼出P和Q是为了避免重复计算

    代码部分

    理论部分阐述完毕,开始上代码,这份代码来自DirectX SDK中的Demo,名字叫做Picking(拾取),该函数位于文件Pick.cpp的最末尾。这个函数有一个特点,就是判断语句特别多,因为对于一个频繁被调用的函数来说,效率是最重要的,这么多判断就是为了在某个条件不满足时,及时返回,避免后续不必要的计算。

     1 // Determine whether a ray intersect with a triangle
     2 // Parameters
     3 // orig: origin of the ray
     4 // dir: direction of the ray
     5 // v0, v1, v2: vertices of triangle
     6 // t(out): weight of the intersection for the ray
     7 // u(out), v(out): barycentric coordinate of intersection
     8 
     9 bool IntersectTriangle(const Vector3& orig, const Vector3& dir,
    10     Vector3& v0, Vector3& v1, Vector3& v2,
    11     float* t, float* u, float* v)
    12 {
    13     // E1
    14     Vector3 E1 = v1 - v0;
    15 
    16     // E2
    17     Vector3 E2 = v2 - v0;
    18 
    19     // P
    20     Vector3 P = dir.Cross(E2);
    21 
    22     // determinant
    23     float det = E1.Dot(P);
    24 
    25     // keep det > 0, modify T accordingly
    26     Vector3 T;
    27     if( det >0 )
    28     {
    29         T = orig - v0;
    30     }
    31     else
    32     {
    33         T = v0 - orig;
    34         det = -det;
    35     }
    36 
    37     // If determinant is near zero, ray lies in plane of triangle
    38     if( det < 0.0001f )
    39         return false;
    40 
    41     // Calculate u and make sure u <= 1
    42     *u = T.Dot(P);
    43     if( *u < 0.0f || *u > det )
    44         return false;
    45 
    46     // Q
    47     Vector3 Q = T.Cross(E1);
    48 
    49     // Calculate v and make sure u + v <= 1
    50     *v = dir.Dot(Q);
    51     if( *v < 0.0f || *u + *v > det )
    52         return false;
    53 
    54     // Calculate t, scale parameters, ray intersects triangle
    55     *t = E2.Dot(Q);
    56 
    57     float fInvDet = 1.0f / det;
    58     *t *= fInvDet;
    59     *u *= fInvDet;
    60     *v *= fInvDet;
    61 
    62     return true;
    63 }

    参数说明

    输入参数:前两个参数orig和dir是射线的起点和方向,中间三个参数v0,v1和v2是三角形的三个顶点。 

    输出参数:t是交点对应的射线方程中的t值,u,v则是交点的纹理坐标值

    代码说明

    变量的命名方式:为了方便阅读,代码中的变量命名与上面公式中的变量保持一致,如E1,E2,T等。

    变量det表示矩阵的行列式值

    27-35行用来确保det>0,如果det<0则令det = -det,并对T做相应的调整,这样做是为了方便后续计算,否则的话需要分别处理det>0和det<0两种情况。

    第38行,注意浮点数和0的比较,一般不用 == 0的方式,而是给定一个Epsilon值,并与这个值比较。

    第43行,这里实际上u还没有计算完毕,此时的值是Dot(P,T),如果Dot(P,T) > det, 那么u > 1,无交点。

    第51行,要确保u + v <= 1,也即 [Dot(P,T) + Dot(Q, D)] / det 必须不能大于1,否则无交点。

    第57-60行,走到这里时,表明前面的条件都已经满足,开始计算t, u, v的最终值。

    交点坐标

    根据上面代码求出的t,u,v的值,交点的最终坐标可以用下面两种方法计算

    O + Dt

    (1 - u - v)V0 + uV1 + vV2

    后记

    在本文开头已经说了,射线和三角形的相交检测最典型的应用就是拾取,比如在一个三维场景中用鼠标选择某个物体。那么拾取是如何实现的呢?我们知道在物体的三维模型表示中,三角形是最小的几何图元,最小意味着不可再分,也就是说任何模型,无论它多么复杂,都可以由若干个三角形组合而成。拾取过程实际是判断拾取射线是否与模型相交,而这又可以转化为-只要射线与模型中的任何一个三角形相交即可。下面是模型的线框表示法,可见如果想要判断某条射线是否与这个茶壶相交,只要判断该射线是否与茶壶模型中某个三角形相交即可。

    需要注意的是,虽然射线和三角形的相交检测可以用来实现拾取,但是大多数程序并不采用这个方法,原因是这个方法效率很低,我们可以设想,一个大型的3D在线游戏,它的模型数量以及复杂程度都是很高的,如果用这种方法来判断,需要对模型中每个三角形都做一次判断,效率极其低下,一种可行的方案是,用包围球或者包围盒来代替,计算出能容纳模型的最小球体或者矩形体,只要判断出射线与包围球或者包围盒相交,我们就认为射线与模型相交,这样效率会显著提高,只是精确度上会有一定误差,但是足以满足多数程序的需要。

    Happy Coding

    == The End ==

  • 相关阅读:
    lua 函数调用1 -- 闭包详解和C调用
    lua API 小记2
    Lua API 小记1
    unity3d开发环境配置
    Hash表
    如何优化Cocos2d-X游戏的内存
    openGL光源概念
    Cocos2D-X屏幕适配新解
    Lua脚本在C++下的舞步
    lua table操作实例详解
  • 原文地址:https://www.cnblogs.com/graphics/p/1795348.html
Copyright © 2020-2023  润新知