• 图论算法


    1 prim 算法  O(n2) 贪心

    /*
        最小生成树Prim 算法: 贪心思想,随机选择一个点当做最小生成树的初始节点,然后把图的顶点分成A集合(含初始节点), 
        B集合(剩余节点)每次选择A集合中的点到B集合中点的最短距离的边,然后用加入的点去松弛A集合点到B集合点的距离信息。不断迭代,
        最终得到最小生成树。
    */
    
    struct Edge{
        int start_, end_;
        float weight_;
    };
    
    void prim(vector<vector<int>> &map, Edge *&mist){
        
        int n = map.size();
        if(n < 1) return ;
        mist = new Edge[n];
        if(mist == NULL) return ;
        
        for(int i - 0; i < n; ++i){
            mist[i].start_ = 0;
            mist[i].end_ = i;
            mist[i].weight_ = map[0][i];
        }
        
        for( int i = 1; i< n; ++i){
            
            int minWeight = mist[i].weight_;
            int minIndex = i;
            for(int j = i+1 ; j< n; ++j){
                if(mist[j].weight_ < minWeight){
                    minWeight = mist[j].weight_;
                    minIndex = j;
                }
            }
            
            if(minIndex != i){
                Edge tp = mist[i];
                mist[i] = mist[minIndex];
                mist[minIndex] = tp;
            }
            
            int x = mist[i].end_,y;
            for(int j = i+1; j<n; ++j){
                y = mist[j].end_;
                if(map[x][y] < mist[j].weight_){
                    mist[j].start_ = x;
                    mist[j].weight = map[x][y];
                }
            }
        }
    }
    View Code

    2 最短路径dijkstra 算法 贪心思想

    struct path{
        int pre;
        int length;
        path(){
            pre = -1;
            length = INT_MAX;
        }
    };
    
    void dijkstra(vector<vector<int>> &graph, path *&dist, int v){
    
        int n = graph.size();
        if(v < 0 || v >= n) return ;
        if(n == 0) return;
        dist = new path[n];
        if(dist == NULL) return ;
        for(int i = 1; i< n; ++i){
            if(graph[v][i] != INT_MAX){
                dist[i].pre = v;
                dist[i].length = graph[v][i];
            }
        }
        
        graph[v][v] = 1;
        
        for(int i = 1; i < n ; ++i){
        
            int min = -1, minLength = INT_MAX;
            for(int j = 0; j < n; ++j){
                if(graph[j][j] != 1 && dist[j].length < minLength){
                    minLength = dist[j].length;
                    min = j;
                }
            }
            if(min == -1) return ;
            graph[min][min] = 1;
            
            for(int j = 0; j< n;++j){
                if(graph[j][j] == 1) continue;
                int tp = dist[min].length + graph[min][j];
                if(tp < dist[j].length){
                    dist[j].length = tp;
                    dist[j].pre = min;
                }
            }
        }
    }
    View Code

    3 floyd 非贪心 O(n3

     void floyd(vector<vector<int>> &graph, vector<vector<int>> &path){
    
        int n = graph.size();
        if(n == 0) return ;
        graph.resize(n, vector<int>(n));
        vector<vector<int>> p(n,vector<int>(n,0));
        
        for(int i = 0; i< n; ++i)
            for(int j = 0; j< n; ++j)
            {
                if(graph[i][j] != INT_MAX)
                    path[i][j] = j;
                else
                    path[i][j] = -1;
                p[i][j] = graph[i][j] ;
            }
        
        for(int k = 0; k< n; ++k)
            for(int i = 0; i< n; ++i)
                for(int j = 0; j< n; ++j)
                {
                    if(p[i][k] == INT_MAX || p[k][j] == INT_MAX) continue;
                    
                    int tp = p[i][k] + p[k][j];
                    if(tp < p[i][j]){
                        p[i][j] = tp;
                        path[i][j] = path[i][k];
                    }
                }
    }
  • 相关阅读:
    Oracle Spool详解
    转自云界漫步:同步容灾100公里的限制来自哪里
    中国十大基金公司排行榜
    DataGuard体系结构
    SWIFT国际资金清算系统
    linux -- 命令大全
    bootstrap -- css -- 图片
    bootstrap -- css -- 按钮
    bootstrap -- css -- 表单控件
    bootstrap -- css -- 表单
  • 原文地址:https://www.cnblogs.com/graph/p/3341098.html
Copyright © 2020-2023  润新知