Given an array w
of positive integers, where w[i]
describes the weight of index i
, write a function pickIndex
which randomly picks an index in proportion to its weight.
Note:
1 <= w.length <= 10000
1 <= w[i] <= 10^5
pickIndex
will be called at most10000
times.
Example 1:
Input:
["Solution","pickIndex"]
[[[1]],[]]
Output: [null,0]
Example 2:
Input:
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output: [null,0,1,1,1,0]
Explanation of Input Syntax:
The input is two lists: the subroutines called and their arguments. Solution
's constructor has one argument, the array w
. pickIndex
has no arguments. Arguments are always wrapped with a list, even if there aren't any.
这道题给了一个权重数组,让我们根据权重来随机取点,现在的点就不是随机等概率的选取了,而是要根据权重的不同来区别选取。比如题目中例子2,权重为 [1, 3],表示有两个点,权重分别为1和3,那么就是说一个点的出现概率是四分之一,另一个出现的概率是四分之三。由于我们的rand()函数是等概率的随机,那么我们如何才能有权重的随机呢,我们可以使用一个trick,由于权重是1和3,相加为4,那么我们现在假设有4个点,然后随机等概率取一个点,随机到第一个点后就表示原来的第一个点,随机到后三个点就表示原来的第二个点,这样就可以保证有权重的随机啦。那么我们就可以建立权重数组的累加和数组,比如若权重数组为 [1, 3, 2] 的话,那么累加和数组为 [1, 4, 6],整个的权重和为6,我们 rand() % 6,可以随机出范围 [0, 5] 内的数,随机到 0 则为第一个点,随机到 1,2,3 则为第二个点,随机到 4,5 则为第三个点,所以我们随机出一个数字x后,然后再累加和数组中查找第一个大于随机数x的数字,使用二分查找法可以找到第一个大于随机数x的数字的坐标,即为所求,参见代码如下:
解法一:
class Solution { public: Solution(vector<int> w) { sum = w; for (int i = 1; i < w.size(); ++i) { sum[i] = sum[i - 1] + w[i]; } } int pickIndex() { int x = rand() % sum.back(), left = 0, right = sum.size() - 1; while (left < right) { int mid = left + (right - left) / 2; if (sum[mid] <= x) left = mid + 1; else right = mid; } return right; } private: vector<int> sum; };
我们也可以把二分查找法换为STL内置的upper_bound函数,根据上面的分析,我们随机出一个数字x后,然后再累加和数组中查找第一个大于随机数x的数字,使用二分查找法可以找到第一个大于随机数x的数字的坐标。而upper_bound() 函数刚好就是查找第一个大于目标值的数,lower_bound() 函数是找到第一个不小于目标值的数,用在这里就不太合适了,关于二分搜索发的分类可以参见博主之前的博客LeetCode Binary Search Summary 二分搜索法小结,参见代码如下:
解法二:
class Solution { public: Solution(vector<int> w) { sum = w; for (int i = 1; i < w.size(); ++i) { sum[i] = sum[i - 1] + w[i]; } } int pickIndex() { int x = rand() % sum.back(); return upper_bound(sum.begin(), sum.end(), x) - sum.begin(); } private: vector<int> sum; };
讨论:这题有个很好的follow up,就是说当weights数组经常变换怎么办,那么这就有涉及到求变化的区域和问题了,在博主之前的一道 Range Sum Query - Mutable 中有各种方法详细的讲解。只要把两道题的解法的精髓融合到一起就行了,可以参见论坛上的这个帖子。
类似题目:
Random Point in Non-overlapping Rectangles
参考资料:
https://leetcode.com/problems/random-pick-with-weight/discuss/154024/JAVA-8-lines-TreeMap