9.8 Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents) and pennies (1 cent), write code to calculate the number of ways of representing n cents.
这道题给定一个钱数,让我们求用quarter,dime,nickle和penny来表示的方法总和,很明显还是要用递归来做。比如我们有50美分,那么
makeChange(50) =
makeChange(50 using 0 quarter) +
makeChange(50 using 1 quarter) +
makeChange(50 using 2 quarters)
而其中第一个makeChange(50 using 0 quarter)又可以拆分为:
makeChange(50 using 0 quarter) =
makeChange(50 using 0 quarter, 0 dimes) +
makeChange(50 using 0 quarter, 1 dimes) +
makeChange(50 using 0 quarter, 2 dimes) +
makeChange(50 using 0 quarter, 3 dimes) +
makeChange(50 using 0 quarter, 4 dimes) +
makeChange(50 using 0 quarter, 5 dimes)
而这里面的每项又可以继续往下拆成nickle和penny,整体是一个树形结构,计算顺序是从最底层开始,也就是给定的钱数都是由penny组成的情况慢慢往回递归,加一个nickle,加两个nickle,再到加dime和quarter,参见代码如下:
解法一:.
class Solution { public: int makeChange(int n) { vector<int> denoms = {25, 10, 5, 1}; return makeChange(n, denoms, 0); } int makeChange(int amount, vector<int> denoms, int idx) { if (idx >= denoms.size() - 1) return 1; int val = denoms[idx], res = 0; for (int i = 0; i * val <= amount; ++i) { int rem = amount - i * val; res += makeChange(rem, denoms, idx + 1); } return res; } };
上述代码虽然正确但是效率一般,因为存在大量的重复计算,我们可以用哈希表来保存计算过程中的结果,下次遇到相同结果时,直接从哈希表中取出来即可,参见代码如下:
解法二:
class Solution { public: int makeChange(int n) { vector<int> denoms = {25, 10, 5, 1}; vector<vector<int> > m(n + 1, vector<int>(denoms.size())); return makeChange(n, denoms, 0, m); } int makeChange(int amount, vector<int> denoms, int idx, vector<vector<int> > &m) { if (m[amount][idx] > 0) return m[amount][idx]; if (idx >= denoms.size() - 1) return 1; int val = denoms[idx], res = 0; for (int i = 0; i * val <= amount; ++i) { int rem = amount - i * val; res += makeChange(rem, denoms, idx + 1, m); } m[amount][idx] = res; return res; } };