• [LeetCode] 209. Minimum Size Subarray Sum 最短子数组之和


    Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

    Example: 

    Input: s = 7, nums = [2,3,1,2,4,3]
    Output: 2
    Explanation: the subarray [4,3] has the minimal length under the problem constraint.
    Follow up:
    If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).  

    Credits:
    Special thanks to @Freezen for adding this problem and creating all test cases.

    这道题给定了我们一个数字,让求子数组之和大于等于给定值的最小长度,注意这里是大于等于,不是等于。跟之前那道 Maximum Subarray 有些类似,并且题目中要求实现 O(n) 和 O(nlgn) 两种解法,那么先来看 O(n) 的解法,需要定义两个指针 left 和 right,分别记录子数组的左右的边界位置,然后让 right 向右移,直到子数组和大于等于给定值或者 right 达到数组末尾,此时更新最短距离,并且将 left 像右移一位,然后再 sum 中减去移去的值,然后重复上面的步骤,直到 right 到达末尾,且 left 到达临界位置,即要么到达边界,要么再往右移动,和就会小于给定值。代码如下:

    解法一

    // O(n)
    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            if (nums.empty()) return 0;
            int left = 0, right = 0, sum = 0, len = nums.size(), res = len + 1;
            while (right < len) {
                while (sum < s && right < len) {
                    sum += nums[right++];
                }
                while (sum >= s) {
                    res = min(res, right - left);
                    sum -= nums[left++];
                }
            }
            return res == len + 1 ? 0 : res;
        }
    };

    同样的思路,我们也可以换一种写法,参考代码如下:

    解法二:

    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            int res = INT_MAX, left = 0, sum = 0;
            for (int i = 0; i < nums.size(); ++i) {
                sum += nums[i];
                while (left <= i && sum >= s) {
                    res = min(res, i - left + 1);
                    sum -= nums[left++];
                }
            }
            return res == INT_MAX ? 0 : res;
        }
    };

    下面再来看看 O(nlgn) 的解法,这个解法要用到二分查找法,思路是,建立一个比原数组长一位的 sums 数组,其中 sums[i] 表示 nums 数组中 [0, i - 1] 的和,然后对于 sums 中每一个值 sums[i],用二分查找法找到子数组的右边界位置,使该子数组之和大于 sums[i] + s,然后更新最短长度的距离即可。代码如下:

    解法三:

    // O(nlgn)
    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            int len = nums.size(), sums[len + 1] = {0}, res = len + 1;
            for (int i = 1; i < len + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
            for (int i = 0; i < len + 1; ++i) {
                int right = searchRight(i + 1, len, sums[i] + s, sums);
                if (right == len + 1) break;
                if (res > right - i) res = right - i;
            }
            return res == len + 1 ? 0 : res;
        }
        int searchRight(int left, int right, int key, int sums[]) {
            while (left <= right) {
                int mid = (left + right) / 2;
                if (sums[mid] >= key) right = mid - 1;
                else left = mid + 1;
            }
            return left;
        }
    };

    我们也可以不用为二分查找法专门写一个函数,直接嵌套在 for 循环中即可,参加代码如下:

    解法四:

    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            int res = INT_MAX, n = nums.size();
            vector<int> sums(n + 1, 0);
            for (int i = 1; i < n + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
            for (int i = 0; i < n; ++i) {
                int left = i + 1, right = n, t = sums[i] + s;
                while (left <= right) {
                    int mid = left + (right - left) / 2;
                    if (sums[mid] < t) left = mid + 1;
                    else right = mid - 1;
                }
                if (left == n + 1) break;
                res = min(res, left - i);
            }
            return res == INT_MAX ? 0 : res;
        }
    };

    讨论:本题有一个很好的 Follow up,就是去掉所有数字是正数的限制条件,而去掉这个条件会使得累加数组不一定会是递增的了,那么就不能使用二分法,同时双指针的方法也会失效,只能另辟蹊径了。其实博主觉得同时应该去掉大于s的条件,只保留 sum=s 这个要求,因为这样就可以在建立累加数组后用 2sum 的思路,快速查找 s-sum 是否存在,如果有了大于的条件,还得继续遍历所有大于 s-sum 的值,效率提高不了多少。

    Github 同步地址:

    https://github.com/grandyang/leetcode/issues/209

    类似题目:

    Minimum Window Substring

    Subarray Sum Equals K

    Maximum Length of Repeated Subarray

    参考资料:

    https://leetcode.com/problems/minimum-size-subarray-sum/

    https://leetcode.com/problems/minimum-size-subarray-sum/discuss/59090/C%2B%2B-O(n)-and-O(nlogn)

    https://leetcode.com/problems/minimum-size-subarray-sum/discuss/59078/Accepted-clean-Java-O(n)-solution-(two-pointers)

    LeetCode All in One 题目讲解汇总(持续更新中...)

  • 相关阅读:
    C# WinForm开发系列
    C# Tcp协议收发数据(TCPClient发,Socket收)
    Tcpclient简单聊天程序
    大白话系列之C#委托与事件讲解大结局
    大白话系列之C#委托与事件讲解(三)
    poj3009
    poj 3083
    poj 2488
    POJ 3320
    poj 3061
  • 原文地址:https://www.cnblogs.com/grandyang/p/4501934.html
Copyright © 2020-2023  润新知