这个马拉车算法 Manacher‘s Algorithm 是用来查找一个字符串的最长回文子串的线性方法,由一个叫 Manacher 的人在 1975 年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这是非常了不起的。对于回文串想必大家都不陌生,就是正读反读都一样的字符串,比如 "bob", "level", "noon" 等等,那么如何在一个字符串中找出最长回文子串呢,可以以每一个字符为中心,向两边寻找回文子串,在遍历完整个数组后,就可以找到最长的回文子串。但是这个方法的时间复杂度为 O(n*n),并不是很高效,下面我们来看时间复杂度为 O(n)的马拉车算法。
由于回文串的长度可奇可偶,比如 "bob" 是奇数形式的回文,"noon" 就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上 '#',那么
bob --> #b#o#b#
noon --> #n#o#o#n#
这样做的好处是不论原字符串是奇数还是偶数个,处理之后得到的字符串的个数都是奇数个,这样就不用分情况讨论了,而可以一起搞定。接下来我们还需要和处理后的字符串t等长的数组p,其中 p[i] 表示以 t[i] 字符为中心的回文子串的半径,若 p[i] = 1,则该回文子串就是 t[i] 本身,那么我们来看一个简单的例子:
# 1 # 2 # 2 # 1 # 2 # 2 #
1 2 1 2 5 2 1 6 1 2 3 2 1
为啥我们关心回文子串的半径呢?看上面那个例子,以中间的 '1' 为中心的回文子串 "#2#2#1#2#2#" 的半径是6,而未添加#号的回文子串为 "22122",长度是5,为半径减1。这是个普遍的规律么?我们再看看之前的那个 "#b#o#b#",我们很容易看出来以中间的 'o' 为中心的回文串的半径是4,而 "bob"的长度是3,符合规律。再来看偶数个的情况 "noon",添加#号后的回文串为 "#n#o#o#n#",以最中间的 '#' 为中心的回文串的半径是5,而 "noon" 的长度是4,完美符合规律。所以我们只要找到了最大的半径,就知道最长的回文子串的字符个数了。只知道长度无法定位子串,我们还需要知道子串的起始位置。
我们还是先来看中间的 '1' 在字符串 "#1#2#2#1#2#2#" 中的位置是7,而半径是6,貌似 7-6=1,刚好就是回文子串 "22122" 在原串 "122122" 中的起始位置1。那么我们再来验证下 "bob","o" 在 "#b#o#b#" 中的位置是3,但是半径是4,这一减成负的了,肯定不对。所以我们应该至少把中心位置向后移动一位,才能为0啊,那么我们就需要在前面增加一个字符,这个字符不能是#号,也不能是s中可能出现的字符,所以我们暂且就用美元号吧,毕竟是博主最爱的东西嘛。这样都不相同的话就不会改变p值了,那么末尾要不要对应的也添加呢,其实不用的,不用加的原因是字符串的结尾标识为 ' ',等于默认加过了。那此时 "o" 在 "$#b#o#b#" 中的位置是4,半径是4,一减就是0了,貌似没啥问题。我们再来验证一下那个数字串,中间的 '1' 在字符串 "$#1#2#2#1#2#2#" 中的位置是8,而半径是6,这一减就是2了,而我们需要的是1,所以我们要除以2。之前的 "bob" 因为相减已经是0了,除以2还是0,没有问题。再来验证一下 "noon",中间的 '#' 在字符串 "$#n#o#o#n#" 中的位置是5,半径也是5,相减并除以2还是0,完美。可以任意试试其他的例子,都是符合这个规律的,最长子串的长度是半径减1,起始位置是中间位置减去半径再除以2。
那么下面我们就来看如何求p数组,需要新增两个辅助变量 mx 和 id,其中 id 为能延伸到最右端的位置的那个回文子串的中心点位置,mx 是回文串能延伸到的最右端的位置,需要注意的是,这个 mx 位置的字符不属于回文串,所以才能用 mx-i 来更新 p[i] 的长度而不用加1,由 mx 的更新方式 mx = i + p[i] 也能看出来 mx 是不在回文串范围内的,这个算法的最核心的一行如下:
p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
可以这么说,这行要是理解了,那么马拉车算法基本上就没啥问题了,那么这一行代码拆开来看就是
如果 mx > i, 则 p[i] = min( p[2 * id - i] , mx - i )
否则,p[i] = 1
当 mx - i > P[j] 的时候,以 S[j] 为中心的回文子串包含在以 S[id] 为中心的回文子串中,由于 i 和 j 对称,以 S[i] 为中心的回文子串必然包含在以 S[id] 为中心的回文子串中,所以必有 P[i] = P[j],其中 j = 2*id - i,因为 j 到 id 之间到距离等于 id 到 i 之间到距离,为 i - id,所以 j = id - (i - id) = 2*id - i,参见下图。
当 P[j] >= mx - i 的时候,以 S[j] 为中心的回文子串不一定完全包含于以 S[id] 为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以 S[i] 为中心的回文子串,其向右至少会扩张到 mx 的位置,也就是说 P[i] = mx - i。至于 mx 之后的部分是否对称,就只能老老实实去匹配了,这就是后面紧跟到 while 循环的作用。
对于 mx <= i 的情况,无法对 P[i] 做更多的假设,只能 P[i] = 1,然后再去匹配了。
参见如下实现代码:
#include <vector> #include <iostream> #include <string> using namespace std; string Manacher(string s) { // Insert '#' string t = "$#"; for (int i = 0; i < s.size(); ++i) { t += s[i]; t += "#"; } // Process t vector<int> p(t.size(), 0); int mx = 0, id = 0, resLen = 0, resCenter = 0; for (int i = 1; i < t.size(); ++i) { p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1; while (t[i + p[i]] == t[i - p[i]]) ++p[i]; if (mx < i + p[i]) { mx = i + p[i]; id = i; } if (resLen < p[i]) { resLen = p[i]; resCenter = i; } } return s.substr((resCenter - resLen) / 2, resLen - 1); } int main() { string s1 = "12212"; cout << Manacher(s1) << endl; string s2 = "122122"; cout << Manacher(s2) << endl; string s = "waabwswfd"; cout << Manacher(s) << endl; }
应用实例: