• leetcode之Maximum Depth of Binary Tree 以及Balanced Binary Tree


    Given a binary tree, find its maximum depth.

    The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

    二叉树的深度,用递归特别方便!

    代码如下:

    public int maxDepth(TreeNode root) {
            if(root==null){
    			return 0;
    		}
    		int le = maxDepth(root.left);
    		int ri = maxDepth(root.right);
    		return le > ri ? (le+1) : (ri+1);
        }
    

      扩展:判断一棵树是不是平衡二叉树

    Given a binary tree, determine if it is height-balanced.

    For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

    可以使用一般的方法,对每个结点求出左右深度,然后深度相减,绝对值是否小于1,但是这样会可能重复遍历一个节点多次。

    代码一:虽然有重复计算,但是最终返回值那里很精妙

        public boolean isBalanced(TreeNode root) {
            
    	        return maxDepth1(root) != -1;
    	    }
    
    	private static int maxDepth1(TreeNode root) {
    	        if (root == null) {
    	            return 0;
    	        }
    
    	        int left = maxDepth1(root.left);
    	        int right = maxDepth1(root.right);
    	        if (left == -1 || right == -1 || Math.abs(left-right) > 1) {
    	            return -1;
    	        }
    	        return Math.max(left, right) + 1;
        
        }
    

      代码2:利用了TreeNode结构中的val,用它来记录以当前结点为根的子树的高度,避免多次计算。

      public boolean isBalanced(TreeNode root) {
    	height(root);  
            return run(root);  
        }  
          
        public boolean run(TreeNode root) {  
            if (root == null) return true;  
              
            int l = 0, r = 0;  
            if (root.left != null) l = root.left.val;  
            if (root.right != null) r = root.right.val;  
            if (Math.abs(l - r) <= 1 && isBalanced(root.left) && isBalanced(root.right)) return true;  
              
            return false;  
        }  
          
        public int height(TreeNode root) {  
            if (root == null) return 0;  
            root.val = Math.max( height(root.left), height(root.right) ) + 1;   
            return root.val;  
        }  
    

      

  • 相关阅读:
    小程序开发过程中遇到的问题
    Windows 常用命令与快捷键
    前端开发中遇到的问题记录
    判断当前页面是否在微信中
    js学习导图
    一篇不错的 文章
    flex 布局
    微信客户端sdk使用前的 授权签名
    elementUI+vue-cli el-table=》excel
    rem适配
  • 原文地址:https://www.cnblogs.com/gracyandjohn/p/4572680.html
Copyright © 2020-2023  润新知