Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
二叉树的深度,用递归特别方便!
代码如下:
public int maxDepth(TreeNode root) { if(root==null){ return 0; } int le = maxDepth(root.left); int ri = maxDepth(root.right); return le > ri ? (le+1) : (ri+1); }
扩展:判断一棵树是不是平衡二叉树?
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
可以使用一般的方法,对每个结点求出左右深度,然后深度相减,绝对值是否小于1,但是这样会可能重复遍历一个节点多次。
代码一:虽然有重复计算,但是最终返回值那里很精妙。
public boolean isBalanced(TreeNode root) { return maxDepth1(root) != -1; } private static int maxDepth1(TreeNode root) { if (root == null) { return 0; } int left = maxDepth1(root.left); int right = maxDepth1(root.right); if (left == -1 || right == -1 || Math.abs(left-right) > 1) { return -1; } return Math.max(left, right) + 1; }
代码2:利用了TreeNode结构中的val,用它来记录以当前结点为根的子树的高度,避免多次计算。
public boolean isBalanced(TreeNode root) { height(root); return run(root); } public boolean run(TreeNode root) { if (root == null) return true; int l = 0, r = 0; if (root.left != null) l = root.left.val; if (root.right != null) r = root.right.val; if (Math.abs(l - r) <= 1 && isBalanced(root.left) && isBalanced(root.right)) return true; return false; } public int height(TreeNode root) { if (root == null) return 0; root.val = Math.max( height(root.left), height(root.right) ) + 1; return root.val; }