• 数据挖掘之聚类算法K-Means总结


      由于项目需要,需要对数据进行处理,故而又要滚回来看看paper,做点小功课,这篇文章只是简单的总结一下基础的Kmeans算法思想以及实现;

    正文:

        1.基础Kmeans算法.

      Kmeans算法的属于基础的聚类算法,它的核心思想是: 从初始的数据点集合,不断纳入新的点,然后再从新计算集合的“中心”,再以改点为初始点重新纳入新的点到集合,在计算”中心”,依次往复,直到这些集合不再都不能再纳入新的数据为止.

    图解:

        假如我们在坐标轴中存在如下A,B,C,D,E一共五个点,然后我们初始化(或者更贴切的说指定)两个特征点(意思就是将五个点分成两个类),采用欧式距离计算距离.

      

    注意的点:

        1.中心计算方式不固定,常用的有使用距离(欧式距离,马式距离,曼哈顿距离,明考斯距离)的中点,还有重量的质心,还有属性值的均值等等,虽然计算方式不同,但是整体上Kmeans求解的思路相同.

        2.初始化的特征点(选取的K个特征数据)会对整个收据聚类产生影响.所以为了得到需要的结果,需要预设指定的凸显的特征点,然后再用Kmeans进行聚类.

    代码实现:   

      1 package com.data.algorithm;
      2 
      3 import java.util.ArrayList;
      4 import java.util.List;
      5 
      6 /**
      7  * *********************************************************
      8  * <p/>
      9  * Author:     XiJun.Gong
     10  * Date:       2017-01-17 15:57
     11  * Version:    default 1.0.0
     12  * Class description:
     13  * <p/>
     14  * *********************************************************
     15  */
     16 public class Kmeans {
     17     private final double exp = 1e-6;
     18 
     19     private List<KMeanData> topk;
     20 
     21     public List<KMeanData> getTopk() {
     22         return topk;
     23     }
     24 
     25     public void setTopk(List<KMeanData> topk) {
     26         this.topk = topk;
     27     }
     28 
     29     class KMeanData {
     30 
     31         private float x;    //x坐标
     32         private float y;    //y坐标
     33         private int flag;   //隶属于哪一个簇
     34 
     35         public int getFlag() {
     36             return flag;
     37         }
     38 
     39         public void setFlag(int flag) {
     40             this.flag = flag;
     41         }
     42 
     43         public float getX() {
     44             return x;
     45         }
     46 
     47         public void setX(float x) {
     48             this.x = x;
     49         }
     50 
     51         public float getY() {
     52             return y;
     53         }
     54 
     55         public void setY(float y) {
     56             this.y = y;
     57         }
     58     }
     59 
     60     public boolean max(float a, float b) {
     61         return a > b + exp ? true : false;
     62     }
     63 
     64     public float distance(KMeanData a, KMeanData b) {
     65 
     66         return (float) Math.sqrt(Math.pow(a.getX() - b.getX(), 2)
     67                 + Math.pow(a.getY() - b.getY(), 2));
     68     }
     69 
     70     public boolean Kequal(KMeanData a, KMeanData b) {
     71         if (Math.abs(a.getY() - b.getY()) < exp && Math.abs(a.getX() - b.getX()) < exp)
     72             return true;
     73         return false;
     74     }
     75 
     76     public KMeanData[] produce(int size, int range) {
     77         KMeanData[] kmData = new KMeanData[size];
     78         for (int i = 0; i < size; i++) {
     79             kmData[i] = new KMeanData();
     80             kmData[i].setX((float) (Math.random() * range));
     81             kmData[i].setY(((float) Math.random() * range));
     82             kmData[i].setFlag(0);
     83         }
     84         return kmData;
     85     }
     86 
     87     public void kprint(KMeanData[] data, final int k) {
     88         for (int i = 1; i <= k; i++) {
     89             System.out.println("第" + i + "簇集合: ( " + this.topk.get(i - 1).getX() + " , " + this.topk.get(i - 1).getY() + " )");
     90             for (int j = 0; j < data.length; j++) {
     91                 if (data[j].getFlag() == i) {
     92                     System.out.print("( " + data[j].getX() + " , " + data[j].getY() + " )");
     93                 }
     94             }
     95             System.out.println("
    ");
     96         }
     97     }
     98 
     99     public KMeanData[] kmeans(KMeanData[] data, final int k) {
    100         if (null == data || data.length < 1) {
    101             System.out.println("data is empty");
    102             return null;
    103         }
    104         if (k > data.length) {
    105             System.out.println("k " + k + " is too larger than data size " + data.length);
    106             return null;
    107         }
    108        /*随机选取k个点*/
    109         topk = new ArrayList<KMeanData>();
    110         int stride = data.length / k;
    111         //均值步长取k的初始簇
    112         for (int i = 0; i < data.length; i += stride) {
    113             data[i].setFlag((i / stride) + 1);
    114             topk.add(data[i]);
    115         }
    116         //聚合
    117         while (true) {
    118             for (int i = 0; i < data.length; i++) {
    119                 float min = (float) 1e9, dist;
    120                 int pos = 0;
    121                 for (KMeanData kter : topk) {
    122                     if (!Kequal(kter, data[i]) && min > (dist = distance(data[i], kter))) {
    123                         min = dist;
    124                         pos = i;
    125                     }
    126                 }
    127                 data[pos].setFlag((i / stride) + 1);
    128             }
    129             //重新计算质心
    130             KMeanData[] ntopk = new KMeanData[k + 1];
    131             int[] kcnt = new int[k + 1];
    132             for (int i = 0; i < data.length; i++) {
    133                 kcnt[data[i].getFlag()]++;
    134                 ntopk[data[i].getFlag()] = new KMeanData();
    135                 ntopk[data[i].getFlag()].setX(ntopk[data[i].getFlag()].getX() + data[i].getX());
    136                 ntopk[data[i].getFlag()].setY(ntopk[data[i].getFlag()].getY() + data[i].getY());
    137             }
    138             for (int i = 1; i <= k; i++) {
    139                 ntopk[i].setX(ntopk[i].getX() / kcnt[i]);
    140             }
    141             //判断一下是否是已经收敛了
    142             boolean flag = false;
    143             for (int i = 0; i < k; i++) {
    144                 if (!Kequal(topk.get(i), ntopk[i + 1])) {
    145                     flag = true;
    146                     topk.set(i, ntopk[i + 1]);
    147                 }
    148             }
    149             if (!flag) break;
    150         }
    151         return data;
    152     }
    153 }
    View Code
     1 package com.data.algorithm;
     2 
     3 
     4 /**
     5  * *********************************************************
     6  * <p/>
     7  * Author:     XiJun.Gong
     8  * Date:       2017-01-17 17:57
     9  * Version:    default 1.0.0
    10  * Class description:
    11  * <p/>
    12  * *********************************************************
    13  */
    14 public class Main {
    15     public static void main(String args[]) {
    16         Kmeans kmeans = new Kmeans();
    17         kmeans.kprint(kmeans.kmeans(kmeans.produce(100, 60), 10), 10);
    18     }
    19 }
    View Code
     1 第1簇集合: ( 2.8443472 , 14.963217 )
     2 ( 19.135574 , 48.378784 )( 31.432192 , 17.925615 )( 4.5895605 , 11.125353 )( 2.1719377 , 22.074598 )( 14.182562 , 34.964306 )( 21.141474 , 39.34452 )( 39.017117 , 56.293888 )( 26.028856 , 36.239174 )( 27.319502 , 55.982365 )( 28.443472 , 14.963217 )
     3 
     4 第2簇集合: ( 0.8835429 , 18.1895 )
     5 ( 22.023354 , 41.003338 )( 23.229214 , 54.271046 )( 14.30185 , 48.939583 )( 2.4819863 , 27.38683 )( 11.668434 , 57.642452 )( 49.092728 , 55.405685 )( 23.38715 , 25.048647 )( 19.695707 , 45.738415 )( 26.929798 , 58.74604 )( 8.835429 , 18.1895 )
     6 
     7 第3簇集合: ( 0.74630326 , 45.51654 )
     8 ( 57.08818 , 41.345074 )( 14.97413 , 36.16043 )( 54.09579 , 36.052063 )( 24.645374 , 57.247772 )( 58.734444 , 27.05567 )( 13.617909 , 16.157734 )( 30.897354 , 31.427551 )( 33.367496 , 33.386326 )( 33.451378 , 53.20307 )( 7.4630327 , 45.51654 )
     9 
    10 第4簇集合: ( 1.968404 , 33.967808 )
    11 ( 5.487106 , 36.14787 )( 45.656933 , 17.261345 )( 28.166676 , 29.430775 )( 13.528182 , 41.53365 )( 22.37523 , 30.01359 )( 52.460278 , 1.8516384 )( 10.2530575 , 47.032955 )( 28.544668 , 41.290382 )( 22.431509 , 6.789385 )( 19.68404 , 33.967808 )
    12 
    13 第5簇集合: ( 1.6082747 , 29.020123 )
    14 ( 59.416927 , 22.173529 )( 27.72831 , 48.705555 )( 59.062904 , 27.449326 )( 6.909786 , 30.03262 )( 42.442226 , 8.278798 )( 51.15263 , 59.101868 )( 7.6760554 , 57.712944 )( 41.01523 , 56.367043 )( 55.39889 , 41.588028 )( 16.082747 , 29.020123 )
    15 
    16 第6簇集合: ( 3.2178578 , 4.2711926 )
    17 ( 0.53403753 , 21.35647 )( 50.560753 , 9.216217 )( 52.925297 , 18.846382 )( 48.62932 , 54.015606 )( 14.116821 , 35.78354 )( 1.8006643 , 44.74982 )( 39.19404 , 1.1245662 )( 43.081966 , 12.171013 )( 51.094734 , 31.339842 )( 32.178577 , 4.2711926 )
    18 
    19 第7簇集合: ( 4.042007 , 31.607666 )
    20 ( 50.17044 , 32.749535 )( 52.281467 , 46.060326 )( 34.024357 , 10.856017 )( 32.16631 , 54.869526 )( 11.773177 , 19.33069 )( 7.3901944 , 30.897972 )( 42.876205 , 0.90321934 )( 1.3056514 , 40.74958 )( 53.546345 , 43.86588 )( 40.42007 , 31.607666 )
    21 
    22 第8簇集合: ( 1.5596402 , 29.19249 )
    23 ( 43.503544 , 21.245668 )( 59.312412 , 35.47328 )( 12.452401 , 14.911624 )( 57.877514 , 46.545307 )( 9.161788 , 53.974636 )( 28.102057 , 40.347496 )( 56.39533 , 15.801934 )( 48.884666 , 50.610317 )( 32.18778 , 8.80818 )( 15.596402 , 29.19249 )
    24 
    25 第9簇集合: ( 2.5482278 , 36.367596 )
    26 ( 52.08338 , 38.900063 )( 46.13634 , 45.479736 )( 37.948357 , 56.04102 )( 27.17064 , 54.725323 )( 56.840836 , 23.867615 )( 53.052013 , 19.699564 )( 48.167595 , 33.628963 )( 5.600155 , 26.792658 )( 8.978055 , 53.935356 )( 25.482279 , 36.367596 )
    27 
    28 第10簇集合: ( 1.3590596 , 35.720345 )
    29 ( 35.742085 , 9.892197 )( 35.366455 , 47.68727 )( 6.3293104 , 39.160095 )( 11.329118 , 21.142208 )( 48.153606 , 18.321869 )( 42.181618 , 44.782696 )( 57.56768 , 30.652052 )( 26.439352 , 38.31146 )( 31.588612 , 55.974304 )( 13.590596 , 35.720345 )

       2. 改进的KMeans算法;

      KMeans算法存在很多很多的改进版, 比如有优化最开始的K个特征数据选取的,还有如何减少计算量的,这里就介绍一下最后一种变种.

    2.1 Mini Batch K-Means;

        Mini Batch K-Means思想核心: 在求解稳定的聚类中心时,每次随机抽取一批数据,然后进行Kmean计算,然后直至中心点稳定之后,在将所有的数据依据这些中心点进行分类,从而达到和KMeans一样的效果,同时有大大的减少了中间的计算量.

       应用的范围: 在面对巨大的数据量时,可以考虑使用这种思路.

    参考文献:

      http://image.hanspub.org:8080/pdf/CSA20160900000_76874550.pdf

  • 相关阅读:
    Javascript Property Names
    Java泛型
    Activity 与 Task
    使用ddns搭建免费服务器
    DDNS
    SimpleAdapter用法
    Java KeyNote
    Android无法访问本地服务器(localhost/127.0.0.1)的解决方案
    Android 添加网络权限
    Java 匿名内部类
  • 原文地址:https://www.cnblogs.com/gongxijun/p/6294159.html
Copyright © 2020-2023  润新知