• POJ--Strange Way to Express Integers


    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 8370   Accepted: 2508

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ ik) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ ik).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    Source

    同余问题:
    关于欧几里得扩展的代码模板:
     1 void exgcd(int a,int b,int * x,int  *y,int  * d)
     2 {
     3    if(b==0)
     4 {
     5  x=1,y=0,d=a;
     6 }
     7 else
     8 {
     9    exgcd(b,a%b,x,y,d);
    10 int temp=x;
    11 x=y,y=temp-a/b*y;
    12 }
    13 }

    解一元多项式时的代码:

     1 int sove()
     2 {
     3     scanf("%d%d",&a1,&r1);
     4     for(i=0;i<n;i++)
     5     {
     6         scanf("%d%d",&a2,r2);
     7         a=a1,b=a2,c=r2-r1;
     8         exgcd(a,b,x,y,d);
     9         if(c%d!=0)
    10         {
    11             ifhave=0;
    12         }
    13         int t=b/d;
    14         x=(x*(c/d)%t+t)%t;
    15         r1=r1+x*a1;
    16         a1=a1*(a2/d);
    17     }
    18     if(!ifhave)
    19     {
    20         r1=-1;
    21     }
    22    return r1;  //即为解的个数
    23 }
    View Code
    代码:
     1 #include<stdio.h>
     2 #define LL long long 
     3 LL x,y,q;
     4 void exgcd(LL a,LL b)
     5 {
     6     if(b==0)
     7     {
     8         x=1,y=0,q=a;
     9     }
    10     else
    11     {
    12         exgcd(b,a%b);
    13         LL temp=x;
    14         x=y,y=temp-a/b*y;
    15     }
    16 }
    17 
    18 int main()
    19 {
    20     LL a1,r1,a2,r2,n,i;
    21     bool ifhave;
    22   while(scanf("%I64d",&n)!=EOF)
    23   {
    24   
    25       scanf("%I64d%I64d",&a1,&r1);
    26       ifhave=true;
    27      for(i=1;i<n;i++)
    28      {
    29          scanf("%I64d%I64d",&a2,&r2);
    30          exgcd(a1,a2); 
    31          if((r2-r1)%q)
    32          {
    33              ifhave=false;
    34          }
    35          LL t=a2/q;
    36          x=(x*((r2-r1)/q)%t+t)%t;
    37          r1+=a1*x;
    38          a1*=(a2/q);
    39      }
    40      if(!ifhave) r1=-1;
    41      printf("%I64d
    ",r1);
    42   }
    43 return 0;
    44 }
    View Code
  • 相关阅读:
    Jenkins+postman+Newman之API自动化测试
    python之路——迭代器和生成器
    文件操作
    函数
    python基础数据类型二
    dp的一种理解角度及[NOI2020]命运 题解
    从零开始“发明”Treap
    博客停更
    [转]Linux下C语言-RPC远程调用编程rpcgen用法
    一位编程小白的自述 —— 从小学到现在
  • 原文地址:https://www.cnblogs.com/gongxijun/p/3303145.html
Copyright © 2020-2023  润新知