• hdu 1159 Common Subsequence(lcs)


    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 38003    Accepted Submission(s): 17422


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    最长公共子序列
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 const int MAXN = 512;
     7 int dp[MAXN][MAXN];
     8 
     9 int main()
    10 {
    11     char s1[MAXN], s2[MAXN];
    12 
    13     int i, j;
    14     int len1, len2;
    15 
    16     while (~scanf("%s%s", s1 + 1, s2 + 1)) {
    17         len1 = strlen(s1 + 1);
    18         len2 = strlen(s2 + 1);
    19         memset(dp, 0, sizeof(dp));
    20 
    21         for (i = 1; i <= len1; ++i) {
    22             for (j = 1; j <= len2; ++j) {
    23                 if (s1[i] == s2[j]) {
    24                     dp[i][j] = dp[i - 1][j - 1] + 1;
    25                 } else {
    26                     dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    27                 }
    28             }
    29         }
    30 
    31         printf("%d
    ", dp[len1][len2]);
    32     }
    33 
    34     return 0;
    35 }
  • 相关阅读:
    转载:DIV+CSS有可能遇到的问题
    CSS3那些不为人知的高级属性
    php获取GET方式传入的全部变量名称与值:foreach用法
    转载:Erlang 资源
    Java工具类 Apache Commons:commons-lang
    PHP安装环境,服务器不支持curl_exec的解决办法
    2018年5月10日论文阅读
    C++ code:char pointers and char arrays(字符指针与字符数组)
    2018年5月9日论文阅读
    C++ code:More Loop Designs
  • 原文地址:https://www.cnblogs.com/gongpixin/p/6739227.html
Copyright © 2020-2023  润新知