• 【洛谷P2016战略游戏】


    树形dp的经典例题

    题目描述

    Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。

    他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。

    注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。

    请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.

    输入输出格式

    输入格式:

    第一行 N,表示树中结点的数目。

    第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连)。

    接下来k个数,分别是每条边的另一个结点标号r1,r2,...,rk。

    对于一个n(0<n<=1500)个结点的树,结点标号在0到n-1之间,在输入数据中每条边只出现一次。

    输出格式:

    输出文件仅包含一个数,为所求的最少的士兵数目。

    例如,对于如下图所示的树:

    答案为1(只要一个士兵在结点1上)。

    输入输出样例

    输入样例#1: 
    4
    0 1 1
    1 2 2 3
    2 0
    3 0
    
    输出样例#1: 
    1
    设 f [ i ][ 0 ] 表示这个点不取,则它的所有子节点都要取
    设f [ i ][ 1 ] 表示这个点取,则它的子节点取与不取对之前的答案没有影响,只要取两个中最优的情况。
    由此推出答案
    #include<bits/stdc++.h>//万能头,666 
    using namespace std;
    int n,x,vis[1501],f[1501][1501];
    struct node//每个点的信息 
    {
        int num,child[1501];//各种孩子和孩子数 
    }a[1501];
    inline void dp(int x)//树形dp的过程 
    {
        f[x][0]=0;//初始dp值 
        f[x][1]=1;//初始dp值
        if(a[x].num==0)//若找到叶子节点,算是一个小优化 
            return;
        for(int i=1;i<=a[x].num;i++)//遍历x的每一个儿子 
        {
            int y=a[x].child[i]; 
            dp(y);//递归dp 
            f[x][0]+=f[y][1];//dp转移方程(若不选x) 
            f[x][1]+=min(f[y][0],f[y][1]);//dp转移方程(若选x) 
        }
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&x);
            scanf("%d",&a[x].num);
            for(int j=1;j<=a[x].num;j++)
            {
                  scanf("%d",&a[x].child[j]);//输入儿子 
                  vis[a[x].child[j]]=1;//该节点有父亲 
            }
        }
        int root=0;//初始为0,开始找根 
        while(vis[root])//寻根 
            root++;
        dp(root);//从根开始dp
        printf("%d",min(f[root][0],f[root][1]));//选择跟更优的方案输出 
        return 0;
    } 
  • 相关阅读:
    数据结构化
    爬取校园新闻首页的新闻
    网络爬虫基础练习
    Hadoop综合大作业
    理解MapReduce
    熟悉常用的HBase操作
    熟悉常用的HDFS操作
    爬虫大作业
    数据结构化与保存
    爬取校园新闻首页的新闻
  • 原文地址:https://www.cnblogs.com/gongcheng456/p/11229809.html
Copyright © 2020-2023  润新知