• Bellman-Ford&&SPFA


    我们前文说过,有关最短路径除了Floyed算法之外,还有许多更加好的方法。这里讲一下有关 Bellman-Ford和SPFA的知识

    Bellman-Ford:复杂度O(VE)

    有关Bellman-Ford,也不是特别的重要,可以说算是对于SPFA的一个铺垫(有更好的方法还用什么laji更慢的算法呢?)【这里有一个迭代搞的我很懵,这里暂且看做是有关松弛的操作】

    Bellman-Ford算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。

    从这里大家可以看出Bellman-Ford和SPFA在一定程度上的弊端:图中有负环则无法出答案。但可以对其进行一步判断

    我们应当明确一点:Bellman-Ford算法是用来解决单源最短路问题的。(恩,没毛病)

    这里需要进行多次的松弛操作,每一次成功的松弛操作,都意味着我们发现了一条新的最短路。所以这个方法显然是对的,但是显然laji够慢

    (下面这一段是黈的,毕竟本蒟蒻不会迭代QAQ)

    注意:1.只有上一次迭代中松弛过的点才有可能参与下一次迭代的松弛操作。

       2.迭代的实际意义:每次迭代k中,我们找到了经历了k条边的最短路。

       3.没有点能够被“松弛”时,迭代结束  

    //由于我不太写Bellman-Ford的代码,这里用的是百度百科的,害怕误人子弟qwq
    #include<iostream> #include<cstdio> using namespace std; #define MAX 0x3f3f3f3f #define N 1010 int nodenum, edgenum, original; //点,边,起点 typedef struct Edge // { int u, v; int cost; }Edge; Edge edge[N]; int dis[N], pre[N]; bool Bellman_Ford() { for(int i = 1; i <= nodenum; ++i) //初始化 dis[i] = (i == original ? 0 : MAX); for(int i = 1; i <= nodenum - 1; ++i) for(int j = 1; j <= edgenum; ++j) if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~) { dis[edge[j].v] = dis[edge[j].u] + edge[j].cost; pre[edge[j].v] = edge[j].u; } bool flag = 1; //判断是否含有负权回路 for(int i = 1; i <= edgenum; ++i) if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost) { flag = 0; break; } return flag; } void print_path(int root) //打印最短路的路径(反向) { while(root != pre[root]) //前驱 { printf("%d-->", root); root = pre[root]; } if(root == pre[root]) printf("%d ", root); } int main() { scanf("%d%d%d", &nodenum, &edgenum, &original); pre[original] = original; for(int i = 1; i <= edgenum; ++i) { scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost); } if(Bellman_Ford()) for(int i = 1; i <= nodenum; ++i) //每个点最短路 { printf("%d ", dis[i]); printf("Path:"); print_path(i); } else printf("have negative circle "); return 0; }

    SPFA:复杂度O(MN)【这里的M在一般不毒瘤的题里是2,N就是边数】

    SPFA 算法是 Bellman-Ford算法的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE)。

    相对于Dijkstra算法来说有相似之处,但又不同(貌似Dijkstra更稳一些qwq)

    算法大致流程是用一个队列来进行维护。 初始时将源加入队列。 每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。

    这样就可以大幅度的减少复杂度(毒瘤题除外)

    因为本蒟蒻初学,这里发一个简单的代码

    可以过洛谷P3371 【模板】单源最短路径(弱化版)

    题目描述

    如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

    输入输出格式

    输入格式:

    第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。

    接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。

    输出格式:

    一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647)

    输入输出样例

    输入样例#1: 复制
    4 6 1
    1 2 2
    2 3 2
    2 4 1
    1 3 5
    3 4 3
    1 4 4
    输出样例#1: 复制
    0 2 4 3

    说明

    时空限制:1000ms,128M

    数据规模:

    对于20%的数据:N<=5,M<=15;

    对于40%的数据:N<=100,M<=10000;

    对于70%的数据:N<=1000,M<=100000;

    对于100%的数据:N<=10000,M<=500000。保证数据随机。

    对于真正 100% 的数据,请移步P4779。请注意,该题与本题数据范围略有不同。

    样例说明:

    图片1到3和1到4的文字位置调换

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    
    using namespace std;
    
    const int inf=2147483647;
    
    int n,m,s;
    int dis[10008],vis[10008],head[10008],num_edge;
    
    struct Edge{
        int next,to,dis;
    }edge[500008];
    
    queue <int> q;
    
    void addedge(int from,int to,int dis)
    {
        num_edge++;
        edge[num_edge].next=head[from];
        edge[num_edge].to=to;
        edge[num_edge].dis=dis;
        head[from]=num_edge;
    }
    
    void spfa()
    {
        for(int i=1;i<=n;++i)
        {
            dis[i]=inf;
            vis[i]=0;
        }
        dis[s]=0;
        vis[s]=1;
        q.push(s); 
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            vis[u]=0;
            for(int i=head[u];i;i=edge[i].next)
            {
                int v=edge[i].to;
                if(dis[v]>dis[u]+edge[i].dis)
                {
                    dis[v]=dis[u]+edge[i].dis;
                    if(!vis[v])
                    {
                        q.push(v);
                        vis[v]=1;
                    }
                }
            }
        }
    }
    
    int main()
    {
        scanf("%d %d %d",&n,&m,&s);
        for(int i=1;i<=m;++i)
        {
            int u,v,d;
            scanf("%d %d %d",&u,&v,&d);
            addedge(u,v,d);
        }
        spfa();
        for(int i=1;i<=n;++i)
        {
            if(i==s) printf("0 ");
            else printf("%d ",dis[i]);
        }
        return 0;
    }
  • 相关阅读:
    php的session和cookie
    CRUD
    hibernate关系映射
    hibernate hql
    String和StringBuffer的区别
    策略模式Strategy
    项目结构
    final关键字
    项目中的建议
    struts学习记录
  • 原文地址:https://www.cnblogs.com/gongcheng456/p/10759140.html
Copyright © 2020-2023  润新知