• 浅析Java的线程池:介绍、优势、设计思路(类比工厂)、参数介绍、任务队列、4种拒绝策略、5种状态


    一、线程池介绍

      我们知道,线程的创建和销毁都需要映射到操作系统,因此其代价是比较高昂的。出于避免频繁创建、销毁线程以及方便线程管理的需要,线程池应运而生。

    1、线程池优势

    (1)降低资源消耗:线程池通常会维护一些线程(数量为 corePoolSize),这些线程被重复使用来执行不同的任务,任务完成后不会销毁。在待处理任务量很大的时候,通过对线程资源的复用,避免了线程的频繁创建与销毁,从而降低了系统资源消耗。

    (2)提高响应速度:由于线程池维护了一批 alive 状态的线程,当任务到达时,不需要再创建线程,而是直接由这些线程去执行任务,从而减少了任务的等待时间。

    (3)提高线程的可管理性:使用线程池可以对线程进行统一的分配,调优和监控。

    2、线程池设计思路

      有句话叫做艺术来源于生活,编程语言也是如此,很多设计思想能映射到日常生活中,比如面向对象思想、封装、继承,等等。今天我们要说的线程池,它同样可以在现实世界找到对应的实体——工厂。先假想一个工厂的生产流程:

      工厂中有固定的一批工人,称为正式工人,工厂接收的订单由这些工人去完成。当订单增加,正式工人已经忙不过来了,工厂会将生产原料暂时堆积在仓库中,等有空闲的工人时再处理(因为工人空闲了也不会主动处理仓库中的生产任务,所以需要调度员实时调度)。仓库堆积满了后,订单还在增加怎么办?工厂只能临时扩招一批工人来应对生产高峰,而这批工人高峰结束后是要清退的,所以称为临时工。当时临时工也以招满后(受限于工位限制,临时工数量有上限),后面的订单只能忍痛拒绝了。

      我们做如下一番映射:

    • 工厂——线程池
    • 订单——任务(Runnable)
    • 正式工人——核心线程
    • 临时工——普通线程
    • 仓库——任务队列
    • 调度员——getTask()  ——  一个方法,将任务队列中的任务调度给空闲线程,在解读线程池有详细介绍

      映射后,形成线程池流程图如下,两者是不是有异曲同工之妙?

      这样,线程池的工作原理或者说流程就很好理解了,提炼成一个简图:

    二、深入线程池

      那么接下来,问题来了,线程池是具体如何实现这套工作机制的呢?从Java线程池 Executor 框架体系可以看出:线程池的真正实现类是ThreadPoolExecutor,因此我们接下来重点研究这个类。

    1、构造方法  ——  研究一个类,先从它的构造方法开始。ThreadPoolExecutor提供了4个有参构造方法:

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), defaultHandler);
    }
    
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 threadFactory, defaultHandler);
    }
    
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), handler);
    }
    
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

      解释一下构造方法中涉及到的参数:

    (1)corePoolSize(必需):核心线程数。即池中一直保持存活的线程数,即使这些线程处于空闲。但是将allowCoreThreadTimeOut参数设置为true后,核心线程处于空闲一段时间以上,也会被回收。
    (2)maximumPoolSize(必需):池中允许的最大线程数。当核心线程全部繁忙且任务队列打满之后,线程池会临时追加线程,直到总线程数达到maximumPoolSize这个上限。
    (3)keepAliveTime(必需):线程空闲超时时间。当非核心线程处于空闲状态的时间超过这个时间后,该线程将被回收。将allowCoreThreadTimeOut参数设置为true后,核心线程也会被回收。
    (4)unit(必需):keepAliveTime参数的时间单位。有:TimeUnit.DAYS(天)、TimeUnit.HOURS(小时)、TimeUnit.MINUTES(分钟)、TimeUnit.SECONDS(秒)、TimeUnit.MILLISECONDS(毫秒)、TimeUnit.MICROSECONDS(微秒)、TimeUnit.NANOSECONDS(纳秒)
    (5)workQueue(必需):任务队列,采用阻塞队列实现。当核心线程全部繁忙时,后续由execute方法提交的Runnable将存放在任务队列中,等待被线程处理。
    (6)threadFactory(可选):线程工厂。指定线程池创建线程的方式。
    (7)handler(可选):拒绝策略。当线程池中线程数达到maximumPoolSize且workQueue打满时,后续提交的任务将被拒绝,handler可以指定用什么方式拒绝任务。

      放到一起再看一下:

    2、任务队列

      使用ThreadPoolExecutor需要指定一个实现了BlockingQueue接口的任务等待队列。在ThreadPoolExecutor线程池的API文档中,一共推荐了三种等待队列,它们是:SynchronousQueue、LinkedBlockingQueue和ArrayBlockingQueue;

    (1)SynchronousQueue:同步队列。这是一个内部没有任何容量的阻塞队列,任何一次插入操作的元素都要等待相对的删除/读取操作,否则进行插入操作的线程就要一直等待,反之亦然。
    (2)LinkedBlockingQueue:无界队列(严格来说并非无界,上限是Integer.MAX_VALUE),基于链表结构。使用无界队列后,当核心线程都繁忙时,后续任务可以无限加入队列,因此线程池中线程数不会超过核心线程数。这种队列可以提高线程池吞吐量,但代价是牺牲内存空间,甚至会导致内存溢出。另外,使用它时可以指定容量,这样它也就是一种有界队列了。
    (3)ArrayBlockingQueue:有界队列,基于数组实现。在线程池初始化时,指定队列的容量,后续无法再调整。这种有界队列有利于防止资源耗尽,但可能更难调整和控制。
      另外,Java还提供了另外4种队列:

    (1)PriorityBlockingQueue:支持优先级排序的无界阻塞队列。存放在PriorityBlockingQueue中的元素必须实现Comparable接口,这样才能通过实现compareTo()方法进行排序。优先级最高的元素将始终排在队列的头部;PriorityBlockingQueue不会保证优先级一样的元素的排序,也不保证当前队列中除了优先级最高的元素以外的元素,随时处于正确排序的位置。
    (2)DelayQueue:延迟队列。基于二叉堆实现,同时具备:无界队列、阻塞队列、优先队列的特征。DelayQueue延迟队列中存放的对象,必须是实现Delayed接口的类对象。通过执行时延从队列中提取任务,时间没到任务取不出来。更多内容请见DelayQueue。
    (3)LinkedBlockingDeque:双端队列。基于链表实现,既可以从尾部插入/取出元素,还可以从头部插入元素/取出元素。
    (4)LinkedTransferQueue:由链表结构组成的无界阻塞队列。这个队列比较特别的时,采用一种预占模式,意思就是消费者线程取元素时,如果队列不为空,则直接取走数据,若队列为空,那就生成一个节点(节点元素为null)入队,然后消费者线程被等待在这个节点上,后面生产者线程入队时发现有一个元素为null的节点,生产者线程就不入队了,直接就将元素填充到该节点,并唤醒该节点等待的线程,被唤醒的消费者线程取走元素。

    3、拒绝策略

      线程池有一个重要的机制:拒绝策略。当线程池workQueue已满且无法再创建新线程池时,就要拒绝后续任务了。拒绝策略需要实现RejectedExecutionHandler接口,不过Executors框架已经为我们实现了4种拒绝策略:

    (1)AbortPolicy(默认):丢弃任务并抛出RejectedExecutionException异常  ——  不执行新任务,直接抛出异常,提示线程池已满
    (2)CallerRunsPolicy:直接运行这个任务的run方法,但并非是由线程池的线程处理,而是交由任务的调用线程处理  ——  直接调用execute来执行当前任务
    (3)DiscardPolicy:直接丢弃任务,不抛出任何异常  ——  不执行新任务,也不抛出异常
    (4)DiscardOldestPolicy:将当前处于等待队列列头的等待任务强行取出,然后再试图将当前被拒绝的任务提交到线程池执行  ——  将消息队列中的第一个任务替换为当前新进来的任务执行

    4、线程池状态  ——  线程池有5种状态:

    volatile int runState;
    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

      runState表示当前线程池的状态,它是一个 volatile 变量用来保证线程之间的可见性。下面的几个static final变量表示runState可能的几个取值,有以下几个状态:

    (1)RUNNING:当创建线程池后,初始时,线程池处于RUNNING状态;
    (2)SHUTDOWN:如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;
    (3)STOP:如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;
    (4)TERMINATED:当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。

      更多详细线程池内容,详见这个大佬写的博客,很详细:深入Java线程池:从设计思想到源码解读  ——  https://blog.csdn.net/mu_wind/article/details/113806680

  • 相关阅读:
    diary and html 文本颜色编辑,行距和其它编辑总汇
    bash coding to changeNames
    virtualbox ubuntu 网络连接 以及 连接 secureCRT
    linux 学习6 软件包安装
    linux 学习8 权限管理
    vim 使用2 转载 为了打开方便
    ubuntu
    linux 学习15 16 启动管理,备份和恢复
    linux 学习 14 日志管理
    linux 学习 13 系统管理
  • 原文地址:https://www.cnblogs.com/goloving/p/15067392.html
Copyright © 2020-2023  润新知