• 标准库


    // Copyright 2010 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    // go/src/fmt/scan.go
    // version 1.7
    
    // 格式化输入输出的用法请参考:http://www.cnblogs.com/golove/p/3284304.html
    
    package fmt
    
    import (
    	"errors"
    	"io"
    	"math"
    	"os"
    	"reflect"
    	"strconv"
    	"sync"
    	"unicode/utf8"
    )
    
    // ScanState 将扫描器的状态报告给自定义类型的 Scan 方法。
    type ScanState interface {
    	// ReadRune 从输入端读取一个字符,如果用在 Scanln 类的扫描器中,
    	// 则该方法会在读到第一个换行符之后或读到指定宽度之后返回 EOF。
    	// r   :读取的字符
    	// size:字符所占用的字节数
    	// err :遇到的错误信息
    	ReadRune() (r rune, size int, err error)
    	// UnreadRune 撤消最后一次的 ReadRune 操作,
    	// 使下次的 ReadRune 操作得到与前一次 ReadRune 相同的结果。
    	// 返回:遇到的错误信息
    	UnreadRune() error
    	// SkipSpace 为自定义的 Scan 方法提供跳过开头空白的能力。
    	// 根据扫描器的不同(Scan 或 Scanln)决定是否跳过换行符。
    	SkipSpace()
    	// Token 用于从输入端读取符合要求的字符串,准备解析。
    	// Token 从输入端读取连续的符合 f(c) 的字符 c。如果 f 为 nil,则使用
    	// !unicode.IsSpace(c) 代替 f(c)。
    	// skipSpace:是否跳过输入端开头的连续空白(通过 SkipSpace 方法)。
    	// token    :存放读取到的数据。
    	// err      :遇到的错误信息。
    	// 注意:token 指向共享的数据,下次的 Token 操作可能会覆盖本次的结果。
    	Token(skipSpace bool, f func(rune) bool) (token []byte, err error)
    	// Width 返回占位符中指定的宽度值(宽度值是字符个数,不是字节个数)。
    	// wid:获取到的宽度值
    	// ok :是否指定了宽度值
    	Width() (wid int, ok bool)
    	// 因为上面实现了 ReadRune 方法,所以 Read 方法永远不应该被 Scan 方法调用。
    	// 一个好的 ScanState 应该让 Read 直接返回相应的错误信息。
    	Read(buf []byte) (n int, err error)
    }
    
    // Scanner 用于让自定义类型实现自己的扫描过程。
    // Scan 方法会从输入端读取数据并将处理结果存入接收端,接收端必须是有效的指针。
    // Scan 方法会被扫描器调用,只要对应的 arg 实现了该方法。
    type Scanner interface {
    	Scan(state ScanState, verb rune) error
    }
    
    // Scan 从标准输入中读取字符串(以空白分隔的值的序列)并解析为具体的值,
    // 存入参数 a 所提供的变量中(参数 a 必须提供变量的地址)。换行视为空白。
    // 当读到 EOF 或所有变量都填写完毕则停止扫描。
    // n  :成功解析的参数数量
    // err:解析过程中遇到的错误信息
    func Scan(a ...interface{}) (n int, err error) {
    	return Fscan(os.Stdin, a...)
    }
    
    // Scanln 和 Scan 类似,只不过遇到换行符就停止扫描。
    func Scanln(a ...interface{}) (n int, err error) {
    	return Fscanln(os.Stdin, a...)
    }
    
    // Scanf 从标准输入中读取字符串,并根据格式字符串 format 对读取的数据进行解析,
    // 存入参数 a 所提供的变量中(参数 a 必须提供变量的地址)。
    // 输入端的换行符必须和格式字符串中的换行符相对应(如果格式字符串中有换行符,则
    // 输入端必须输入相应的换行符)。
    // 占位符 %c 总是匹配下一个字符,包括空白,比如空格符、制表符、换行符。
    // n  :成功解析的参数数量
    // err:解析过程中遇到的错误信息
    func Scanf(format string, a ...interface{}) (n int, err error) {
    	return Fscanf(os.Stdin, format, a...)
    }
    
    // 实现了 Reader 接口的字符串类型
    type stringReader string
    
    func (r *stringReader) Read(b []byte) (n int, err error) {
    	n = copy(b, *r)
    	*r = (*r)[n:]
    	if n == 0 {
    		err = io.EOF
    	}
    	return
    }
    
    // Sscan 和 Scan 类似,只不过从 str 中读取数据。
    func Sscan(str string, a ...interface{}) (n int, err error) {
    	return Fscan((*stringReader)(&str), a...)
    }
    
    // Sscanln 和 Scanln 类似,只不过从 str 中读取数据。
    func Sscanln(str string, a ...interface{}) (n int, err error) {
    	return Fscanln((*stringReader)(&str), a...)
    }
    
    // Sscanf 和 Scanf 类似,只不过从 str 中读取数据。
    func Sscanf(str string, format string, a ...interface{}) (n int, err error) {
    	return Fscanf((*stringReader)(&str), format, a...)
    }
    
    // Fscan 和 Scan 类似,只不过从 r 中读取数据。
    func Fscan(r io.Reader, a ...interface{}) (n int, err error) {
    	s, old := newScanState(r, true, false) // 创建扫描器
    	n, err = s.doScan(a)                   // 开始扫描
    	s.free(old)                            // 回收扫描器
    	return
    }
    
    // Fscanln 和 Fcanln 类似,只不过从 r 中读取数据。
    func Fscanln(r io.Reader, a ...interface{}) (n int, err error) {
    	s, old := newScanState(r, false, true) // 创建扫描器
    	n, err = s.doScan(a)                   // 开始扫描
    	s.free(old)                            // 回收扫描器
    	return
    }
    
    // Fscanf 和 Scanf 类似,只不过从 r 中读取数据。
    func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err error) {
    	s, old := newScanState(r, false, false) // 创建扫描器
    	n, err = s.doScanf(format, a)           // 开始扫描
    	s.free(old)                             // 回收扫描器
    	return
    }
    
    // scanError 声明本地错误类型,用于 recover 时辨别 panic 是否由本地代码产生的。
    type scanError struct {
    	err error
    }
    
    // 本地代码用 -1 表示遇到 EOF
    const eof = -1
    
    // ss 是扫描器,整个扫描过程都是由它完成的。
    // 它从 rs 中读取数据并进行解析。
    type ss struct {
    	rs    io.RuneScanner // 输入端
    	buf   buffer         // 缓冲区
    	count int            // 已读取的字符数
    	atEOF bool           // 是否读到 EOF
    	ssave                // 一些需要经常复位的字段
    }
    
    // ssave 是 ss 的一部分,存储一些需要经常复位的字段
    type ssave struct {
    	validSave bool // 平时用不上,递归时使用
    	nlIsEnd   bool // 是否在换行符之后停止读取
    	nlIsSpace bool // 是否将换行符视为空白
    	argLimit  int  // 已读的字符数不能超过 argLimit(argLimit <= limit)
    	limit     int  // 已读的字符数不能超过 limit(好像就当做常量在使用,用于复位 argLimit)
    	maxWid    int  // 存储占位符中指定的宽度值
    }
    
    // 实现 ScanState 接口
    // Read 方法仅用于 ScanState 以满足 io.Reader 接口。
    // 在内部永远不会调用它,所以没有必要让它有任何动作。
    func (s *ss) Read(buf []byte) (n int, err error) {
    	return 0, errors.New("ScanState's Read should not be called. Use ReadRune")
    }
    
    // 实现 ScanState 接口
    func (s *ss) ReadRune() (r rune, size int, err error) {
    	// 读到 EOF 或超出读取限制,则返回 0 0 nil
    	if s.atEOF || s.count >= s.argLimit {
    		err = io.EOF
    		return
    	}
    	r, size, err = s.rs.ReadRune()
    	if err == nil {
    		s.count++ // 统计被读出的字符数
    		if s.nlIsEnd && r == '
    ' {
    			s.atEOF = true // 拒绝再次 ReadRune
    		}
    	} else if err == io.EOF {
    		s.atEOF = true // 拒绝再次 ReadRune
    	}
    	return
    }
    
    // 实现 ScanState 接口
    func (s *ss) Width() (wid int, ok bool) {
    	if s.maxWid == hugeWid { //	hugeWid 是常量 1 << 30
    		return 0, false
    	}
    	return s.maxWid, true
    }
    
    // 读取一个字符,如果遇到 EOF 则返回 eof(即 -1)
    // 如果遇到其它错误,则中止整个扫描过程,返回 err。
    func (s *ss) getRune() (r rune) {
    	r, _, err := s.ReadRune()
    	if err != nil {
    		if err == io.EOF {
    			return eof
    		}
    		s.error(err)
    	}
    	return
    }
    
    // 功能同 getRune,只不过遇到 EOF 也中止整个扫描过程,返回 err。
    func (s *ss) mustReadRune() (r rune) {
    	r = s.getRune()
    	if r == eof {
    		s.error(io.ErrUnexpectedEOF)
    	}
    	return
    }
    
    // 实现 ScanState 接口
    func (s *ss) UnreadRune() error {
    	s.rs.UnreadRune()
    	s.atEOF = false // 允许再次 ReadRune
    	s.count--       // 统计被读出的字符数
    	return nil      // UnreadRune 可以反复调用,不返回错误信息。
    }
    
    // 将错误信息转换为 panic。
    // 用于配合 recover 快速结束函数调用链,避免过多的返回值判断。
    // 类似于 break label 的用法。
    func (s *ss) error(err error) {
    	panic(scanError{err})
    }
    
    // 作用同上面的 error 方法
    func (s *ss) errorString(err string) {
    	panic(scanError{errors.New(err)})
    }
    
    // 实现 ScanState 接口
    func (s *ss) Token(skipSpace bool, f func(rune) bool) (tok []byte, err error) {
    	// 遇到本地错误则仅仅返回 err 信息。
    	// 遇到其它错误则 panic。
    	defer func() {
    		if e := recover(); e != nil {
    			if se, ok := e.(scanError); ok {
    				err = se.err
    			} else {
    				panic(e)
    			}
    		}
    	}()
    	// 确定审查函数
    	if f == nil {
    		f = notSpace
    	}
    	// 准备缓冲区给 s.token 用
    	s.buf = s.buf[:0]
    	tok = s.token(skipSpace, f)
    	return
    }
    
    // space 是 unicode.White_Space 的拷贝,避免包的深度依赖。
    // 这些都是空白字符的 Unicode 码点范围
    var space = [][2]uint16{
    	{0x0009, 0x000d},
    	{0x0020, 0x0020},
    	{0x0085, 0x0085},
    	{0x00a0, 0x00a0},
    	{0x1680, 0x1680},
    	{0x2000, 0x200a},
    	{0x2028, 0x2029},
    	{0x202f, 0x202f},
    	{0x205f, 0x205f},
    	{0x3000, 0x3000},
    }
    
    // 判断 r 是否为空白字符
    func isSpace(r rune) bool {
    	// 空白字符的码点不会超过 2 个字节
    	if r >= 1<<16 {
    		return false
    	}
    	// 开始判断
    	rx := uint16(r)
    	for _, rng := range space {
    		if rx < rng[0] {
    			return false
    		}
    		if rx <= rng[1] {
    			return true
    		}
    	}
    	return false
    }
    
    // notSpace 是 Token 中的默认审查函数。
    func notSpace(r rune) bool {
    	return !isSpace(r)
    }
    
    // 实现 ScanState 接口
    func (s *ss) SkipSpace() {
    	s.skipSpace(false)
    }
    
    // readRune 用于将 io.Reader 包装成 io.RuneScanner
    type readRune struct {
    	reader   io.Reader         // 被包装的 io.Reader
    	buf      [utf8.UTFMax]byte // 仅在 ReadRune 方法中使用
    	pending  int               // pendBuf 中存放的字节数,遇到无效 UTF8 编码时使用。
    	pendBuf  [utf8.UTFMax]byte // 存放读取的无效 UTF-8 编码,一次处理不完,留着下次处理
    	peekRune rune              // 用于 UnreadRune 存放撤销的字符。
    }
    
    // readByte 读取一个字节
    // 它可能是上次 ReadRune 时未处理完的不完整 UTF8 编码。
    func (r *readRune) readByte() (b byte, err error) {
    	// 如果之前的 ReadRune 有未处理完的字节,则重新读出这些字节。
    	if r.pending > 0 {
    		// 读出一个字节
    		b = r.pendBuf[0]
    		// 剩下的字节向前移动一格
    		copy(r.pendBuf[0:], r.pendBuf[1:])
    		r.pending--
    		return
    	}
    	// 如果没有未处理的字节,则从输入端读出一个字节
    	n, err := io.ReadFull(r.reader, r.pendBuf[:1])
    	if n != 1 {
    		return 0, err
    	}
    	return r.pendBuf[0], err
    }
    
    // 实现 io.RuneScanner 接口
    func (r *readRune) ReadRune() (rr rune, size int, err error) {
    	// 之前 UnreadRune 撤销的字符,存在 peekRune 中,有则直接取出。
    	if r.peekRune >= 0 {
    		rr = r.peekRune
    		// 将 peekRune 取反为负数,表示允许 UnreadRune 执行撤销操作
    		r.peekRune = ^r.peekRune
    		size = utf8.RuneLen(rr)
    		return
    	}
    	// 没有撤销的字符,则从输入端读取一个
    	r.buf[0], err = r.readByte()
    	if err != nil {
    		return
    	}
    	// 如果读出的是一个单字节字符,则读取完毕。
    	if r.buf[0] < utf8.RuneSelf {
    		rr = rune(r.buf[0])
    		size = 1
    		// 将读出的内容写入 peekRune 后取反,以便 UnreadRune 可以撤销。
    		r.peekRune = ^rr
    		return
    	}
    	// 读出的不是单字节字符
    	var n int
    	// FullRune 的功能不太好理解,总的来说,就是判断首字符的编码长度是否完整,
    	// 如果不完整则返回 false,其它情况都返回 true(包括无效编码)。
    	// 循环直到 r.buf[:n] 是完整的 UTF-8 编码(或无效编码)
    	for n = 1; !utf8.FullRune(r.buf[:n]); n++ {
    		// 如果字符编码长度不够,则再读出一个字节,继续判断
    		r.buf[n], err = r.readByte()
    		if err != nil {
    			if err == io.EOF {
    				err = nil // 之前有读出的字节未处理,跳出去处理
    				break
    			}
    			return
    		}
    	}
    	// 解码刚读出的 UTF-8 序列
    	rr, size = utf8.DecodeRune(r.buf[:n])
    	if size < n {
    		// 遇到错误,保存未处理的字节,用于下一次读取。
    		copy(r.pendBuf[r.pending:], r.buf[size:n])
    		r.pending += n - size
    	}
    	// 将读出的内容写入 peekRune 后取反,以便 UnreadRune 可以撤销。
    	r.peekRune = ^rr
    	return
    }
    
    // 实现 io.RuneScanner 接口
    func (r *readRune) UnreadRune() error {
    	// 之前执行过 UnreadRune,不能重复执行。
    	// 只有 UnreadRune 才能让 peekRune 大于 0。
    	if r.peekRune >= 0 {
    		return errors.New("fmt: scanning called UnreadRune with no rune available")
    	}
    	// 开始撤销
    	// 反转 peekRune 中的二进制位,使其成为有效的字符。
    	r.peekRune = ^r.peekRune
    	return nil
    }
    
    // 临时对象池
    var ssFree = sync.Pool{
    	New: func() interface{} { return new(ss) },
    }
    
    // 创建扫描器,或从临时对象池中获取一个。
    func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) {
    	// 从临时对象池中获取一个扫描器
    	s = ssFree.Get().(*ss)
    	// 如果参数 r 不是一个 RuneScanner,则将其包装成 RuneScanner 再赋值给 s.rs
    	if rs, ok := r.(io.RuneScanner); ok {
    		s.rs = rs
    	} else {
    		// 注意:r 只有 Read 方法,没有撤销方法,所以这里包装的 readRune 对象
    		// 无法将 UnreadRune 所撤销的内容返回到 r 中。也就是说,尽量为 r 提供
    		// RuneScanner,否则可能造成 r 中的数据丢失。
    		s.rs = &readRune{reader: r, peekRune: -1}
    	}
    	// 复位参数
    	s.nlIsSpace = nlIsSpace
    	s.nlIsEnd = nlIsEnd
    	s.atEOF = false
    	s.limit = hugeWid
    	s.argLimit = hugeWid
    	s.maxWid = hugeWid
    	s.validSave = true
    	s.count = 0
    	return
    }
    
    // 回收扫描器,避免再次分配。
    func (s *ss) free(old ssave) {
    	// 如果扫描器被递归使用,则只需要恢复旧状态,然后继续使用。
    	if old.validSave {
    		s.ssave = old
    		return
    	}
    	// 不回收缓冲区太大的扫描器,避免内存浪费。
    	if cap(s.buf) > 1024 {
    		return
    	}
    	// 复位并存入
    	s.buf = s.buf[:0]
    	s.rs = nil
    	ssFree.Put(s)
    }
    
    // 用于实现 ScanState 接口
    func (s *ss) skipSpace(stopAtNewline bool) {
    	for {
    		r := s.getRune()
    		if r == eof {
    			return
    		}
    		// 
     当 
     处理
    		// peek 判断即将读取的字符是否在字符串 "
    " 中(只判断不读取)。
    		if r == '
    ' && s.peek("
    ") {
    			continue
    		}
    		if r == '
    ' {
    			if stopAtNewline { // 换行符之后停止读取
    				break
    			}
    			if s.nlIsSpace { // 换行符当空白处理
    				continue
    			}
    			// 换行符当非空白字符处理
    			// 在这里不允许,所以中止整个扫描过程,返回 err。
    			s.errorString("unexpected newline")
    			return
    		}
    		// 非空白字符,撤销读取并返回。
    		if !isSpace(r) {
    			s.UnreadRune()
    			break
    		}
    	}
    }
    
    // 用于实现 ScanState 接口
    func (s *ss) token(skipSpace bool, f func(rune) bool) []byte {
    	if skipSpace {
    		s.skipSpace(false)
    	}
    	// 循环读取直到不满足 f(r) 或遇到 EOF
    	for {
    		r := s.getRune()
    		if r == eof {
    			break
    		}
    		if !f(r) {
    			s.UnreadRune()
    			break
    		}
    		s.buf.WriteRune(r)
    	}
    	return s.buf
    }
    
    var complexError = errors.New("syntax error scanning complex number")
    var boolError = errors.New("syntax error scanning boolean")
    
    // 返回 r 在 s 中的字符序号(不是字节下标)
    func indexRune(s string, r rune) int {
    	for i, c := range s {
    		if c == r {
    			return i
    		}
    	}
    	return -1
    }
    
    // 判断即将读取的字符是否在 ok 中。
    // 如果 accept 为 flase 则读取并丢弃该字符,无论结果如何。
    // 如果 accept 为 true,则根据结果做进一步处理:
    // 结果为 true :将字符读入 s.buf 中
    // 结果为 false:不读取该字符
    func (s *ss) consume(ok string, accept bool) bool {
    	r := s.getRune()
    	if r == eof {
    		return false
    	}
    	// r 在 ok 中
    	if indexRune(ok, r) >= 0 {
    		if accept {
    			s.buf.WriteRune(r)
    		}
    		return true
    	}
    	// r 不在 ok 中(上面已经判断过 r == eof,所以这里没必要再次判断)
    	if r != eof && accept {
    		s.UnreadRune() // 不读取该字符
    	}
    	return false
    }
    
    // 判断即将读取的字符是否在 ok 中,但不读取该字符。
    func (s *ss) peek(ok string) bool {
    	r := s.getRune()
    	if r != eof {
    		s.UnreadRune()
    	}
    	// 在 ok 中查找 r 的下标,判断您是否 >= 0
    	return indexRune(ok, r) >= 0
    }
    
    // 判断输入端是否有数据可读
    // 如果没有数据可读,则中止整个扫描过程,返回 err。
    func (s *ss) notEOF() {
    	if r := s.getRune(); r == eof {
    		panic(io.EOF)
    	}
    	s.UnreadRune()
    }
    
    // 判断即将读取的字符是否在 ok 中,如果在,则将其读入 s.buf 中,
    // 并返回 true,否则不读取,并返回 false。
    func (s *ss) accept(ok string) bool {
    	return s.consume(ok, true)
    }
    
    // 判断 verb 是否在 okVerbs 中,
    // 如果在,则返回 true。如果不在,则中止整个扫描过程,返回 err。
    // 没有返回 false 的情况。typ 用于在 err 中指示类型信息。
    func (s *ss) okVerb(verb rune, okVerbs, typ string) bool {
    	for _, v := range okVerbs {
    		if v == verb {
    			return true
    		}
    	}
    	s.errorString("bad verb '%" + string(verb) + "' for " + typ)
    	return false
    }
    
    // 从输入端读取一个布尔值,verb 必须为 t 或 v,否则读取失败。
    // 可探测 0、1、t、f、true、false,忽略大小写。
    func (s *ss) scanBool(verb rune) bool {
    	// 跳过行首空白(包括换行符)
    	s.skipSpace(false)
    	// 输入端必须有内容可读
    	s.notEOF()
    	// 动词不是 t 或 v,不符合布尔型的要求
    	if !s.okVerb(verb, "tv", "boolean") {
    		return false
    	}
    	// 布尔型的语法检测很讨厌,我们不做严格要求。
    	// 如果遇到不完整的 tr、tru 或 fa、fal、fals 则中止整个扫描过程,返回 err。
    	switch s.getRune() {
    	case '0':
    		return false
    	case '1':
    		return true
    	case 't', 'T':
    		if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) {
    			s.error(boolError)
    		}
    		return true
    	case 'f', 'F':
    		if s.accept("aA") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) {
    			s.error(boolError)
    		}
    		return false
    	}
    	return false
    }
    
    // 数值元素
    const (
    	binaryDigits      = "01"
    	octalDigits       = "01234567"
    	decimalDigits     = "0123456789"
    	hexadecimalDigits = "0123456789aAbBcCdDeEfF"
    	sign              = "+-"
    	period            = "."
    	exponent          = "eEp"
    )
    
    // 返回 verb 所代表的进位制,及其字符范围(即上面的常量)
    func (s *ss) getBase(verb rune) (base int, digits string) {
    	// 判断 verb 是否符合整型要求。
    	// 如果不符合,则中止整个扫描过程,返回 err。
    	s.okVerb(verb, "bdoUxXv", "integer")
    	base = 10 // 默认为十进制
    	digits = decimalDigits
    	switch verb {
    	case 'b': // 二进制
    		base = 2
    		digits = binaryDigits
    	case 'o': // 八进制
    		base = 8
    		digits = octalDigits
    	case 'x', 'X', 'U': // 十六进制
    		base = 16
    		digits = hexadecimalDigits
    	}
    	return
    }
    
    // 从输入端读取数值字符串到 s.buf 中。
    // digits 是可接收的字符范围(不同进位制有不同的字符范围)
    // haveDigits 表示 s.buf 中是否已经有数值存在,
    // 如果没有,则本方法必须读出数值,否则中止整个扫描过程,返回 err。
    func (s *ss) scanNumber(digits string, haveDigits bool) string {
    	if !haveDigits {
    		// 输入端必须有内容可读
    		s.notEOF()
    		if !s.accept(digits) {
    			// 如果没有读到指定进制的字符,则中止整个扫描过程,返回 err。
    			s.errorString("expected integer")
    		}
    	}
    	// 继续读取合格的字符,存入 s.buf 中
    	for s.accept(digits) {
    	}
    	// 返回读出的字符串
    	return string(s.buf)
    }
    
    // 功能同 ReadRune,只不过通过 bitSize 限制读取字符的位宽。
    // 如果读出的字符在指定位宽内,则返回,否则中止整个扫描过程,返回 err。
    func (s *ss) scanRune(bitSize int) int64 {
    	s.notEOF()
    	r := int64(s.getRune())
    	n := uint(bitSize)
    	// 位宽判断
    	x := (r << (64 - n)) >> (64 - n)
    	if x != r {
    		s.errorString("overflow on character value " + string(r))
    	}
    	return r
    }
    
    // 根据输入端的前导符 0 或 0x 判断进位制并返回,同时返回字符范围。
    // found 表示检测到前导符。只有当动词是 %v 的时候才会被调用。
    func (s *ss) scanBasePrefix() (base int, digits string, found bool) {
    	// 如果不是以 0 开头,表示是十进制数
    	if !s.peek("0") {
    		return 10, decimalDigits, false
    	}
    	// 如果是 0 开头,则将其读入 s.buf 中
    	s.accept("0")
    	found = true // 已经读出一个 0,如果前导符后面没有数值,将使用该 0 值。
    	// 继续判断是八进制还是十六进制
    	base, digits = 8, octalDigits
    	if s.peek("xX") {
    		s.consume("xX", false) // 丢弃匹配的 x 或 X 字符
    		base, digits = 16, hexadecimalDigits
    	}
    	return
    }
    
    // 读取一个 int64 整数。bitSize 用于限制整数的位宽。
    // 如果读出的整数在指定位宽内,则返回,否则中止整个扫描过程,返回 err。
    func (s *ss) scanInt(verb rune, bitSize int) int64 {
    	// 只需要读取一个字符
    	if verb == 'c' {
    		return s.scanRune(bitSize)
    	}
    	s.skipSpace(false)
    	s.notEOF()
    	// 根据不同的动词获取进位制信息
    	base, digits := s.getBase(verb)
    	haveDigits := false // 是否已经读出数值
    	if verb == 'U' {
    		// 丢弃前导符 U+
    		// 如果没有读取到 U+ 则中止整个扫描过程,返回 err。
    		if !s.consume("U", false) || !s.consume("+", false) {
    			s.errorString("bad unicode format ")
    		}
    	} else {
    		// sign 是常量 +-,如果能读取到符号,则将其存入 s.buf 中。
    		s.accept(sign)
    		if verb == 'v' {
    			// 根据输入端的前导符 0 或 0x 确定进位制
    			// 如果有前导符,则已经读出一个 0,前导符后面可以没有数值。
    			base, digits, haveDigits = s.scanBasePrefix()
    		}
    	}
    	// 读出数值字符串,如果读取失败,则中止整个扫描过程,返回 err。
    	tok := s.scanNumber(digits, haveDigits)
    	// 转换为整型
    	i, err := strconv.ParseInt(tok, base, 64)
    	if err != nil {
    		s.error(err)
    	}
    	// 位宽判断
    	n := uint(bitSize)
    	x := (i << (64 - n)) >> (64 - n)
    	if x != i {
    		s.errorString("integer overflow on token " + tok)
    	}
    	return i
    }
    
    // 功能同 scanInt,只不过返回的是无符号整数。
    func (s *ss) scanUint(verb rune, bitSize int) uint64 {
    	if verb == 'c' {
    		return uint64(s.scanRune(bitSize))
    	}
    	s.skipSpace(false)
    	s.notEOF()
    	base, digits := s.getBase(verb)
    	haveDigits := false
    	if verb == 'U' {
    		if !s.consume("U", false) || !s.consume("+", false) {
    			s.errorString("bad unicode format ")
    		}
    	} else if verb == 'v' {
    		base, digits, haveDigits = s.scanBasePrefix()
    	}
    	tok := s.scanNumber(digits, haveDigits)
    	i, err := strconv.ParseUint(tok, base, 64)
    	if err != nil {
    		s.error(err)
    	}
    	n := uint(bitSize)
    	x := (i << (64 - n)) >> (64 - n)
    	if x != i {
    		s.errorString("unsigned integer overflow on token " + tok)
    	}
    	return i
    }
    
    // 读取一个浮点数,如果指定了宽度值,则不会超过宽度值。
    // 没有检查“只有指数没有小数”的情况,但是 Atof 会进行检查。
    func (s *ss) floatToken() string {
    	s.buf = s.buf[:0]
    	// 非数值 NAN
    	if s.accept("nN") && s.accept("aA") && s.accept("nN") {
    		return string(s.buf)
    	}
    	// 符号 +-
    	s.accept(sign)
    	// 无穷大 INF
    	if s.accept("iI") && s.accept("nN") && s.accept("fF") {
    		return string(s.buf)
    	}
    	// 整数部分
    	for s.accept(decimalDigits) {
    	}
    	// 小数点
    	if s.accept(period) {
    		// 小数部分
    		for s.accept(decimalDigits) {
    		}
    	}
    	// 指数标志
    	if s.accept(exponent) {
    		// 指数符号
    		s.accept(sign)
    		// 指数值
    		for s.accept(decimalDigits) {
    		}
    	}
    	return string(s.buf)
    }
    
    // 读出一个虚数的实部和虚部。
    // 虚数可以加上括号,虚数格式必须为 N+Ni,N 必须是浮点数,中间不能有空格。
    func (s *ss) complexTokens() (real, imag string) {
    	// TODO: 未实现纯实部和纯虚部的读取
    	parens := s.accept("(") // 登记是否以 "(" 开头
    	real = s.floatToken()   // 读取实部
    	s.buf = s.buf[:0]
    	// 虚部必须有符号
    	if !s.accept("+-") { // 读取符号到 s.buf
    		s.error(complexError)
    	}
    	imagSign := string(s.buf) // 取出符号
    	imag = s.floatToken()     // 读取虚部
    	if !s.accept("i") {       // 虚部后面必须为 i
    		s.error(complexError)
    	}
    	// 如果以 "(" 开头,则必须以 ")" 结尾。
    	if parens && !s.accept(")") {
    		s.error(complexError)
    	}
    	return real, imagSign + imag
    }
    
    // 将一个字符串转换为 float64 类型的值。
    // str 要转换的字符串,n:要转换出的浮点数类型(32 或 64)
    // 如果转换失败,则中止整个扫描过程,返回 err。
    func (s *ss) convertFloat(str string, n int) float64 {
    	// Atof 不处理以 2 为底的指数,但是它们很容易计算。
    	if p := indexRune(str, 'p'); p >= 0 {
    		// 获取小数部分
    		f, err := strconv.ParseFloat(str[:p], n)
    		if err != nil {
    			if e, ok := err.(*strconv.NumError); ok {
    				e.Num = str
    			}
    			s.error(err)
    		}
    		// 获取指数部分
    		m, err := strconv.Atoi(str[p+1:])
    		if err != nil {
    			//
    			if e, ok := err.(*strconv.NumError); ok {
    				e.Num = str
    			}
    			s.error(err)
    		}
    		// 算出结果:f * (2 的 m 次方)
    		return math.Ldexp(f, m)
    	}
    	// 普通浮点数直接转换
    	f, err := strconv.ParseFloat(str, n)
    	if err != nil {
    		s.error(err)
    	}
    	return f
    }
    
    // 读取一个 complex128 类型的值。
    func (s *ss) scanComplex(verb rune, n int) complex128 {
    	// 检查 verb 的有效性(floatVerbs 是常量 "beEfFgGv")
    	if !s.okVerb(verb, floatVerbs, "complex") {
    		return 0
    	}
    	s.skipSpace(false)
    	s.notEOF()
    	// 读取实部和虚部
    	sreal, simag := s.complexTokens()
    	real := s.convertFloat(sreal, n/2)
    	imag := s.convertFloat(simag, n/2)
    	return complex(real, imag)
    }
    
    // 读取一个字符串。
    func (s *ss) convertString(verb rune) (str string) {
    	// 检查 verb 的有效性
    	if !s.okVerb(verb, "svqxX", "string") {
    		return ""
    	}
    	s.skipSpace(false)
    	s.notEOF()
    	switch verb {
    	case 'q': // 带引号字符串
    		str = s.quotedString()
    	case 'x', 'X': // 十六进制格式的字符串
    		str = s.hexString()
    	default:
    		// %s 和 %v 仅返回连续的非空白字符
    		str = string(s.token(true, notSpace))
    	}
    	return
    }
    
    // 读取双引号或反引号字符串。
    func (s *ss) quotedString() string {
    	s.notEOF()
    	quote := s.getRune()
    	switch quote {
    	case '`':
    		// 读取直到遇到下一个反引号或 EOF
    		for {
    			r := s.mustReadRune()
    			if r == quote {
    				break
    			}
    			s.buf.WriteRune(r)
    		}
    		return string(s.buf)
    	case '"':
    		s.buf.WriteByte('"')
    		for {
    			r := s.mustReadRune()
    			s.buf.WriteRune(r)
    			if r == '\' {
    				// strconv.Unquote 会处理转义字符,这里只需要写入。
    				s.buf.WriteRune(s.mustReadRune())
    			} else if r == '"' {
    				break
    			}
    		}
    		result, err := strconv.Unquote(string(s.buf))
    		if err != nil {
    			s.error(err)
    		}
    		return result
    	default:
    		s.errorString("expected quoted string")
    	}
    	return ""
    }
    
    // hexDigit 返回十六进制字符所代表的十进制值
    func hexDigit(d rune) (int, bool) {
    	digit := int(d)
    	switch digit {
    	case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
    		return digit - '0', true
    	case 'a', 'b', 'c', 'd', 'e', 'f':
    		return 10 + digit - 'a', true
    	case 'A', 'B', 'C', 'D', 'E', 'F':
    		return 10 + digit - 'A', true
    	}
    	return -1, false
    }
    
    // 读取两个十六进制字符,并返回其所表示的字节。
    // b :读取的字节
    // ok:是否读取成功
    // 如果缺少后一个字符,则中止整个扫描过程,返回 err。
    func (s *ss) hexByte() (b byte, ok bool) {
    	// 处理第一个字符
    	rune1 := s.getRune()
    	if rune1 == eof {
    		return
    	}
    	value1, ok := hexDigit(rune1)
    	if !ok {
    		s.UnreadRune()
    		return
    	}
    	// 处理第二个字符
    	value2, ok := hexDigit(s.mustReadRune())
    	if !ok {
    		s.errorString("illegal hex digit")
    		return
    	}
    	// 转换为十进制数值
    	return byte(value1<<4 | value2), true
    }
    
    // 读取十六进制字符串,并返回其所表示的内容
    // 两个十六进制字符表示一个字节
    // 读取失败则中止整个扫描过程,返回 err。
    func (s *ss) hexString() string {
    	s.notEOF()
    	for {
    		// 读取两个十六进制字符所表示的一个字节
    		b, ok := s.hexByte()
    		if !ok {
    			break
    		}
    		s.buf.WriteByte(b)
    	}
    	if len(s.buf) == 0 {
    		s.errorString("no hex data for %x string")
    		return ""
    	}
    	return string(s.buf)
    }
    
    const (
    	floatVerbs = "beEfFgGv"
    
    	hugeWid = 1 << 30
    
    	intBits     = 32 << (^uint(0) >> 63)
    	uintptrBits = 32 << (^uintptr(0) >> 63)
    )
    
    // 处理一个 arg。
    // 遇到错误则中止整个扫描过程,返回 err。
    func (s *ss) scanOne(verb rune, arg interface{}) {
    	s.buf = s.buf[:0]
    	var err error
    	// 如果参数有它自己的 Scan 方法,则调用它。
    	if v, ok := arg.(Scanner); ok {
    		err = v.Scan(s, verb)
    		if err != nil {
    			if err == io.EOF {
    				err = io.ErrUnexpectedEOF
    			}
    			s.error(err)
    		}
    		return
    	}
    
    	// 根据不同的 arg 类型选择不同的解析方法。
    	switch v := arg.(type) {
    	case *bool:
    		*v = s.scanBool(verb)
    	case *complex64:
    		*v = complex64(s.scanComplex(verb, 64))
    	case *complex128:
    		*v = s.scanComplex(verb, 128)
    	case *int:
    		*v = int(s.scanInt(verb, intBits))
    	case *int8:
    		*v = int8(s.scanInt(verb, 8))
    	case *int16:
    		*v = int16(s.scanInt(verb, 16))
    	case *int32:
    		*v = int32(s.scanInt(verb, 32))
    	case *int64:
    		*v = s.scanInt(verb, 64)
    	case *uint:
    		*v = uint(s.scanUint(verb, intBits))
    	case *uint8:
    		*v = uint8(s.scanUint(verb, 8))
    	case *uint16:
    		*v = uint16(s.scanUint(verb, 16))
    	case *uint32:
    		*v = uint32(s.scanUint(verb, 32))
    	case *uint64:
    		*v = s.scanUint(verb, 64)
    	case *uintptr:
    		*v = uintptr(s.scanUint(verb, uintptrBits))
    	case *float32:
    		if s.okVerb(verb, floatVerbs, "float32") {
    			s.skipSpace(false)
    			s.notEOF()
    			*v = float32(s.convertFloat(s.floatToken(), 32))
    		}
    	case *float64:
    		if s.okVerb(verb, floatVerbs, "float64") {
    			s.skipSpace(false)
    			s.notEOF()
    			*v = s.convertFloat(s.floatToken(), 64)
    		}
    	case *string:
    		*v = s.convertString(verb)
    	case *[]byte:
    		// 先扫描成字符串,然后再转换为 []byte,所以得到的是一个副本,
    		// 如果我们扫描成 []byte,那么结果将指向缓冲区。
    		*v = []byte(s.convertString(verb))
    	default:
    		val := reflect.ValueOf(v)
    		ptr := val
    		// arg 必须是一个指针,就像其它 arg 那样
    		if ptr.Kind() != reflect.Ptr {
    			s.errorString("type not a pointer: " + val.Type().String())
    			return
    		}
    		// 接下来的流程和上面一样
    		switch v := ptr.Elem(); v.Kind() {
    		case reflect.Bool:
    			v.SetBool(s.scanBool(verb))
    		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
    			v.SetInt(s.scanInt(verb, v.Type().Bits()))
    		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
    			v.SetUint(s.scanUint(verb, v.Type().Bits()))
    		case reflect.String:
    			v.SetString(s.convertString(verb))
    		case reflect.Slice:
    			typ := v.Type()
    			// 对于切片,只能处理 []byte 的别名类型。
    			if typ.Elem().Kind() != reflect.Uint8 {
    				s.errorString("can't scan type: " + val.Type().String())
    			}
    			// 解析出字符串
    			str := s.convertString(verb)
    			// 转换为字节切片返回
    			v.Set(reflect.MakeSlice(typ, len(str), len(str)))
    			for i := 0; i < len(str); i++ {
    				v.Index(i).SetUint(uint64(str[i]))
    			}
    		case reflect.Float32, reflect.Float64:
    			s.skipSpace(false)
    			s.notEOF()
    			v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits()))
    		case reflect.Complex64, reflect.Complex128:
    			v.SetComplex(s.scanComplex(verb, v.Type().Bits()))
    		default:
    			s.errorString("can't scan type: " + val.Type().String())
    		}
    	}
    }
    
    // 将本地引发的 panic(scanError 类型)和 EOF panic 转换为 error。
    func errorHandler(errp *error) {
    	if e := recover(); e != nil {
    		// 本地 panic 转换为 error
    		if se, ok := e.(scanError); ok {
    			*errp = se.err
    			// EOF panic 也转换为 error
    		} else if eof, ok := e.(error); ok && eof == io.EOF {
    			*errp = eof
    		} else {
    			panic(e)
    		}
    	}
    }
    
    // 扫描器的扫描过程
    func (s *ss) doScan(a []interface{}) (numProcessed int, err error) {
    	defer errorHandler(&err)
    
    	// 循环处理所有 arg
    	for _, arg := range a {
    		s.scanOne('v', arg)
    		numProcessed++
    	}
    
    	// 所有参数扫描结束
    
    	// 检查是否以换行符或 EOF 结尾(Scanln 等需要这个错误信息)
    	if s.nlIsEnd {
    		for {
    			r := s.getRune()
    			if r == '
    ' || r == eof {
    				break
    			}
    			// 跳过空白字符后再次判断
    			if !isSpace(r) {
    				s.errorString("expected newline")
    				break
    			}
    		}
    	}
    	return
    }
    
    // 处理非占位字符串,返回已处理的字节数。处理结果分为以下几种情况:
    // 遇到占位符               :返回 % 之前的字节数
    // 不匹配                   :返回 -1
    // 完全匹配(format 被读完):返回 len(foramt)
    // 输入端被读完             :强行中止扫描
    // advance 的逻辑比较复杂,要配合 doScanf 理解,很难完全理解。
    func (s *ss) advance(format string) (i int) {
    	// 这里的 format 不是完整的格式字符串,而是由 doScanf 提供的
    	// 未处理部分的格式字符串。doScanf 处理完一个占位符后,就把
    	// 剩下的格式字符串交给 advance 处理。
    	for i < len(format) {
    		// 解码一个待处理字符
    		fmtc, w := utf8.DecodeRuneInString(format[i:])
    
    		// 1、处理遇到的 % 号
    
    		if fmtc == '%' {
    			// 不能以 % 结尾
    			if i+w == len(format) {
    				s.errorString("missing verb: % at end of format string")
    			}
    			nextc, _ := utf8.DecodeRuneInString(format[i+w:])
    			// 遇到单独的 %(占位符)则返回 % 的下标 i(即 % 之前已处理的字节数)
    			if nextc != '%' {
    				return
    			}
    			// %% 被解析为一个 %,当做普通字符,交给后面处理
    			i += w // 跳过 %% 中的前一个 %
    		}
    
    		// 2、处理 format 中的连续空白字符
    
    		sawSpace := false   // 是否遇到连续的空白字符(包括换行符)
    		wasNewline := false // 是否遇到换行符
    
    		// 跳过连续的空白符
    		for isSpace(fmtc) && i < len(format) {
    			if fmtc == '
    ' {
    				if wasNewline {
    					// 一次只处理一个换行符,之后的换行符交给后面处理
    					break
    				}
    				// 登记遇到换行符
    				wasNewline = true
    			}
    			// 登记遇到空白字符
    			sawSpace = true
    			i += w // 跳过已处理的空白字符
    			// 更新待处理字符
    			fmtc, w = utf8.DecodeRuneInString(format[i:])
    		}
    
    		// 到此,表示没有连续空白或已跳过连续空白,
    		// 此时 i 指向非空白字符或换行符(即前面遇到的未处理的换行符)。
    
    		// 3、对比输入端的连续空白字符
    
    		if sawSpace {
    			inputc := s.getRune()
    			if inputc == eof {
    				// 输入端被读空,返回已处理的字节数。
    				// 返回后,在 doScanf 中继续判断 format 是否也被读完。
    				return
    			}
    			// 输入端未遇到空白字符,匹配失败,中止整个扫描过程,返回 err。
    			if !isSpace(inputc) {
    				s.errorString("expected space in input to match format")
    			}
    			// 输入端也遇到空白字符,跳过空白部分。
    			for inputc != '
    ' && isSpace(inputc) {
    				inputc = s.getRune()
    			}
    			// 此时 inputc 有可能为 eof
    			// 输入端遇到换行符
    			if inputc == '
    ' {
    				// format 中未遇到换行符,匹配失败,中止整个扫描过程,返回 err。
    				if !wasNewline {
    					s.errorString("newline in input does not match format")
    				}
    
    				// 到此,输入端和 format 中都遇到换行符,匹配成功。
    
    				// 输入端换行符之后的空白没有继续处理,而 format 中却处理了,
    				// 这将导致 "
     a %d" 无法匹配 "
     a 1"。使用的时候要注意。
    
    				// 匹配完毕,返回已处理的字节数
    				// 这里把 
     当做一次扫描结束,这种行为类似于 Scanln。
    				return
    			}
    
    			// 输入端空白字符处理完毕,未遇到换行符,则读取的应该是非空白字符。
    
    			// 撤销对非空白字符的读取,交给下一轮去处理。
    			// 如果之前读取的是 eof 则 UnreadRune 不会撤销任何内容。
    			s.UnreadRune()
    			// format 中遇到换行符,与输入端不匹配
    			if wasNewline {
    				s.errorString("newline in format does not match input")
    			}
    			// 空白部分(第二个换行符之前的)全部匹配成功,继续下一轮,处理后面的字符。
    			continue
    		}
    
    		// 到此,表示 format 中没遇到空白字符或空白字符已经处理完毕。
    
    		// 4、处理 format 中的非空白字符
    
    		// 使用 mustReadRune 而不是 getRune 表示如果读取失败(EOF),
    		// 则中止整个扫描过程,返回 err。
    		inputc := s.mustReadRune()
    
    		// 非空白字符匹配失败,撤销对 input 的读取,并返回 -1
    		if fmtc != inputc {
    			// 匹配失败,应该不需要再做什么了,不过 advance 作为一个独立的功能函数,
    			// 还是要严谨一些,执行 s.UnreadRune 是为了保证输入端中已处理的内容与 
    			// format 中 i 的位置对齐。
    			s.UnreadRune()
    			return -1
    		}
    		// 非空白字符匹配成功,继续处理下一个字符。
    		i += w
    	}
    	// 全部处理完毕,返回 len(format)
    	return
    }
    
    // 扫描器的格式化扫描过程
    func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err error) {
    	// 消化本地 panic,结束整个扫描过程。
    	defer errorHandler(&err)
    	end := len(format) - 1
    	for i := 0; i <= end; {
    		// 先处理 format 中的非占位符部分。
    		w := s.advance(format[i:])
    		// 循环直到遇到 % 字符
    		if w > 0 {
    			i += w
    			continue
    			// 这里有一个作用,就是当 i == len(format) 时,
    			// 会终止循环,不会继续在后面访问 format[i]
    		}
    
    		// 到这里,表示 format 没有处理完,而且应该处理占位符了。
    
    		// 没有遇找到占位符,看看是什么原因
    		if format[i] != '%' {
    			// 非空白字符匹配失败
    			if w < 0 {
    				s.errorString("input does not match format")
    			}
    			// 到此,表示遇到 EOF
    
    			// 不过代码不会执行到这里,因为在 advance 中 EOF 会引发 panic
    			// 为了逻辑的严谨,这里还是需要添加一个 break,以防 advance 发生改变。
    			break
    		}
    
    		i++ // 跳过 % 号
    
    		// 读取占位符中的宽度信息
    		var widPresent bool
    		s.maxWid, widPresent, i = parsenum(format, i, end)
    		// 如果没有设置宽度信息,则将宽度设置为默认值 hugeWid
    		if !widPresent {
    			s.maxWid = hugeWid // hugeWid 是常量 1 << 30
    		}
    		// 获取动词
    		c, w := utf8.DecodeRuneInString(format[i:])
    		i += w // 跳过动词
    
    		// 如果动词不是 c,则跳过输入端开头的空白
    		if c != 'c' {
    			s.SkipSpace()
    		}
    
    		// 默认读取限制
    		s.argLimit = s.limit
    		// 根据占位符中的宽度信息设置输入端允许读出的最大字符数
    		if f := s.count + s.maxWid; f < s.argLimit {
    			s.argLimit = f
    		}
    
    		// arg 太少,占位符太多,数量不匹配。
    		if numProcessed >= len(a) {
    			s.errorString("too few operands for format '%" + format[i-w:] + "'")
    			break
    		}
    		arg := a[numProcessed]
    
    		s.scanOne(c, arg) // 处理一个 arg
    		numProcessed++    // 跳过已处理的 arg
    		// 恢复默认读取限制
    		s.argLimit = s.limit
    	}
    	// arg 太多,占位符太少,数量不匹配。
    	if numProcessed < len(a) {
    		s.errorString("too many operands")
    	}
    	return
    }
    
    
    
    
  • 相关阅读:
    超市帐单系统
    JavaOOP
    拦截器的工作原理是什么?
    struts2
    500错误
    idea添加struts框架后报错
    2019春第九周作业
    2019春第八周作业
    2019春第七周作业
    2019春第六周作业
  • 原文地址:https://www.cnblogs.com/golove/p/5888441.html
Copyright © 2020-2023  润新知