• 具体数学-第13课(组合数各种性质)


    原文链接:

    具体数学-第13课 - WeiYang Blog
    首先庆祝我自己顺利毕业了,忙完了毕业论文答辩一直在浪,所以上周的具体数学没有更新,现在补更一下,大家见谅。


    首先这节课讲的基本都是组合数的相关性质,而且特别多,所以我就不在这里详细证明了,如果你们对某一个性质感兴趣,可以自己证明去。

    性质1

    首先将组合数推广到负数域,也就是底数为负数的情况:
    left( {egin{array}{*{20}{c}}r\kend{array}} 
ight) = {( - 1)^k}left( {egin{array}{*{20}{c}}{k - r - 1}\kend{array}} 
ight)
    证明可以从下降阶乘幂的定义直接得到。

    性质2

    由于
    left( {egin{array}{*{20}{c}}{m + n}\mend{array}} 
ight) = left( {egin{array}{*{20}{c}}{m + n}\nend{array}} 
ight)
    所以由性质1可得
    {( - 1)^m}left( {egin{array}{*{20}{c}}{ - n - 1}\mend{array}} 
ight) = {( - 1)^n}left( {egin{array}{*{20}{c}}{ - m - 1}\nend{array}} 
ight)

    性质3

    sumlimits_{k le m} {left( {egin{array}{*{20}{c}}r\kend{array}} 
ight){ {( - 1)}^k}} = {( - 1)^m}left( {egin{array}{*{20}{c}}{r - 1}\mend{array}} 
ight)
    这就说明了杨辉三角同一行的前面若干项交错和是可以求得的,但是它们的直接和是无法求出的。

    性质4

    sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + r}\kend{array}} 
ight){x^k}{y^{m - k}} = sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{ - r}\kend{array}} 
ight){ {( - x)}^k}{ {(x + y)}^{m - k}}} }
    证明可以通过令
    {S_m} = sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + r}\kend{array}} 
ight){x^k}{y^{m - k}}} = sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + r - 1}\kend{array}} 
ight){x^k}{y^{m - k}}} + sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + r - 1}\{k - 1}end{array}} 
ight){x^k}{y^{m - k}}}
    将左边表示成递归式的形式,同理如果右边可以表示成相同的递归式,那么左右就相等了。

    性质4看起来特别复杂,那么它有什么用呢?如果令 xy 等于不同的值,那么就可以得到许多不同的恒等式。

    性质5

    x = - 1,y = 1 可以得到
    sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + r}\kend{array}} 
ight){ {( - 1)}^k}} = left( {egin{array}{*{20}{c}}{ - r}\mend{array}} 
ight)
    这其实就是性质3的特例。

    性质6

    x = y = 1,r = m + 1 可以得到
    sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{2m + 1}\kend{array}} 
ight)} = sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + k}\kend{array}} 
ight){2^{m - k}}}
    左边就是杨辉三角一行中左边一半的和,所以可以得到
    sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{m + k}\kend{array}} 
ight){2^{ - k}}} {
m{ = }}{2^m}

    性质7

    left( {egin{array}{*{20}{c}}r\mend{array}} 
ight)left( {egin{array}{*{20}{c}}m\kend{array}} 
ight) = left( {egin{array}{*{20}{c}}r\kend{array}} 
ight)left( {egin{array}{*{20}{c}}{r - k}\{m - k}end{array}} 
ight)
    这个公式可以形象理解为,从 r 个物品中取 m 个,再从这 m 个中取 k 个的方法数等于从 r 个物品中取 k 个,再从剩下的 r-k 个中取 m-k 个的方法数。证明的话直接用定义可证。

    性质8

    之前介绍了二项式系数,那么可以推广到任意 m 个未知数,它的展开式为
    {({x_1} + {x_2} + cdots + {x_m})^n} = sumlimits_{scriptstyle0 le {a_1},{a_2}, cdots ,{a_m} le natopscriptstyle{a_1} + {a_2} + cdots + {a_m} = n} {left( {egin{array}{*{20}{c}}{ {a_1} + {a_2} + cdots + {a_m}}\{ {a_1},{a_2}, cdots ,{a_m}}end{array}} 
ight)} {x_1}^{ {a_1}}{x_2}^{ {a_2}} cdots {x_m}^{ {a_m}}
    其中
    left( {egin{array}{*{20}{c}}{ {a_1} + {a_2} + cdots + {a_m}}\{ {a_1},{a_2}, cdots ,{a_m}}end{array}} 
ight) = left( {egin{array}{*{20}{c}}{ {a_1} + {a_2} + cdots + {a_m}}\{ {a_2} + cdots + {a_m}}end{array}} 
ight) cdots left( {egin{array}{*{20}{c}}{ {a_{m - 1}} + {a_m}}\{ {a_m}}end{array}} 
ight)

    性质9

    范德蒙德卷积式:
    sumlimits_k {left( {egin{array}{*{20}{c}}r\{m + k}end{array}} 
ight)} left( {egin{array}{*{20}{c}}s\{n - k}end{array}} 
ight) = left( {egin{array}{*{20}{c}}{r + s}\{m + n}end{array}} 
ight)
    很多公式都可以通过替换其中的一些变量推导得到:
    egin{array}{l}sumlimits_k {left( {egin{array}{*{20}{c}}l\{m + k}end{array}} 
ight)} left( {egin{array}{*{20}{c}}s\{n + k}end{array}} 
ight) = left( {egin{array}{*{20}{c}}{l + s}\{l - m + n}end{array}} 
ight)\sumlimits_k {left( {egin{array}{*{20}{c}}l\{m + k}end{array}} 
ight)} left( {egin{array}{*{20}{c}}{s + k}\nend{array}} 
ight){( - 1)^k} = {( - 1)^{l + m}}left( {egin{array}{*{20}{c}}{s - m}\{n - l}end{array}} 
ight)\sumlimits_{k le l} {left( {egin{array}{*{20}{c}}{l - k}\mend{array}} 
ight)} left( {egin{array}{*{20}{c}}s\{k - n}end{array}} 
ight){( - 1)^k} = {( - 1)^{l + m}}left( {egin{array}{*{20}{c}}{s - m - 1}\{l - m - n}end{array}} 
ight)\sumlimits_{0 le k le l} {left( {egin{array}{*{20}{c}}{l - k}\mend{array}} 
ight)} left( {egin{array}{*{20}{c}}{q + k}\nend{array}} 
ight) = left( {egin{array}{*{20}{c}}{l + q + 1}\{m + n + 1}end{array}} 
ight)end{array}

    例题1

    最后详细求解一道组合题,其他的题目就不介绍了,可以去看具体数学英文版第173页。

    求下面式子的闭形式解:
    sumlimits_{k = 0}^m {left( {egin{array}{*{20}{c}}m\kend{array}} 
ight)/left( {egin{array}{*{20}{c}}n\kend{array}} 
ight)} ,n ge m ge 0

    根据性质7,可以得到
    left( {egin{array}{*{20}{c}}m\kend{array}} 
ight)/left( {egin{array}{*{20}{c}}n\kend{array}} 
ight) = left( {egin{array}{*{20}{c}}{n - k}\{m - k}end{array}} 
ight)/left( {egin{array}{*{20}{c}}n\mend{array}} 
ight)
    所以
    sumlimits_{k = 0}^m {left( {egin{array}{*{20}{c}}m\kend{array}} 
ight)/left( {egin{array}{*{20}{c}}n\kend{array}} 
ight)} = sumlimits_{k = 0}^m {left( {egin{array}{*{20}{c}}{n - k}\{m - k}end{array}} 
ight)/left( {egin{array}{*{20}{c}}n\mend{array}} 
ight)}

    egin{array}{l}sumlimits_{k ge 0} {left( {egin{array}{*{20}{c}}{n - k}\{m - k}end{array}} 
ight)} = sumlimits_{m - k ge 0} {left( {egin{array}{*{20}{c}}{n - (m - k)}\{m - (m - k)}end{array}} 
ight)} \ = sumlimits_{k le m} {left( {egin{array}{*{20}{c}}{n - m + k}\kend{array}} 
ight)} \ = left( {egin{array}{*{20}{c}}{(n - m) + m + 1}\mend{array}} 
ight)\ = left( {egin{array}{*{20}{c}}{n + 1}\mend{array}} 
ight)end{array}
    所以
    sumlimits_{k = 0}^m {left( {egin{array}{*{20}{c}}m\kend{array}} 
ight)/left( {egin{array}{*{20}{c}}n\kend{array}} 
ight)} = left( {egin{array}{*{20}{c}}{n + 1}\mend{array}} 
ight)/left( {egin{array}{*{20}{c}}n\mend{array}} 
ight) = frac{ {n + 1}}{ {n + 1 - m}}

  • 相关阅读:
    复利计算(修改后)
    复利计算测试(C语言)
    实验一、命令解释程序的编写
    《构建之法》之第一二三章读后感
    复利计算1.0 2.0 3.0
    复利计算总结
    Scrum 项目7.0——第一个Sprint的总结和读后感
    Scrum 项目7.0——第一个Sprint的演示和回顾
    Scrum 项目4.0&&5.0
    操作系统——进程调度模拟程序
  • 原文地址:https://www.cnblogs.com/godweiyang/p/12203921.html
Copyright © 2020-2023  润新知