• 6 、 图论—NP 搜索


    6.1 最大团

    //最大团
    //返回最大团大小和一个方案,传入图的大小 n 和邻接阵 mat
    //mat[i][j]为布尔量
    #define MAXN 60
    void clique(int n, int* u, int mat[][MAXN], int size, int& max, int& bb, int* res, int* rr, int* c) {
    int i, j, vn, v[MAXN];
    if (n) {
    if (size + c[u[0]] <= max) return;
    for (i = 0; i < n + size - max && i < n; ++ i) {
    for (j = i + 1, vn = 0; j < n; ++ j)
    if (mat[u[i]][u[j]])
    v[vn ++] = u[j];
    rr[size] = u[i];
    clique(vn, v, mat, size + 1, max, bb, res, rr, c);
    if (bb) return;
    }
    } else if (size > max) {
    max = size;
    for (i = 0; i < size; ++ i)
    res[i] = rr[i];
    bb = 1;
    }
    }
    int maxclique(int n, int mat[][MAXN], int *ret) {
    int max = 0, bb, c[MAXN], i, j;
    int vn, v[MAXN], rr[MAXN];
    for (c[i = n - 1] = 0; i >= 0; -- i) {
    for (vn = 0, j = i + 1; j < n; ++ j)
    if (mat[i][j])
    v[vn ++] = j;
    bb = 0;
    rr[0] = i;
    clique(vn, v, mat, 1, max, bb, ret, rr, c);
    c[i] = max;
    }
    return max;
    }

    6.2 最大团(n<64)(faster)

    /**
    * WishingBone's ACM/ICPC Routine Library
    *
    * maximum clique solver
    */
    #include <vector>
    using std::vector;
    // clique solver calculates both size and consitution of maximum clique
    // uses bit operation to accelerate searching
    // graph size limit is 63, the graph should be undirected
    // can optimize to calculate on each component, and sort on vertex degrees
    // can be used to solve maximum independent set
    class clique {
    public:
    static const long long ONE = 1;
    static const long long MASK = (1 << 21) - 1;
    76
    char* bits;
    int n, size, cmax[63];
    long long mask[63], cons;
    // initiate lookup table
    clique() {
    bits = new char[1 << 21];
    bits[0] = 0;
    for (int i = 1; i < 1 << 21; ++i) bits[i] = bits[i >> 1] + (i & 1);
    }
    ~clique() {
    delete bits;
    }
    // search routine
    bool search(int step, int size, long long more, long long con);
    // solve maximum clique and return size
    int sizeClique(vector<vector<int> >& mat);
    // solve maximum clique and return constitution
    vector<int> consClique(vector<vector<int> >& mat);
    };
    // search routine
    // step is node id, size is current solution, more is available mask, cons is
    constitution mask
    bool clique::search(int step, int size, long long more, long long cons) {
    if (step >= n) {
    // a new solution reached
    this->size = size;
    this->cons = cons;
    return true;
    }
    long long now = ONE << step;
    if ((now & more) > 0) {
    long long next = more & mask[step];
    if (size + bits[next & MASK] + bits[(next >> 21) & MASK] + bits[next >>
    42] >= this->size
    && size + cmax[step] > this->size) {
    // the current node is in the clique
    if (search(step + 1, size + 1, next, cons | now)) return true;
    }
    }
    long long next = more & ~now;
    if (size + bits[next & MASK] + bits[(next >> 21) & MASK] + bits[next >> 42]
    > this->size) {
    // the current node is not in the clique
    77
    if (search(step + 1, size, next, cons)) return true;
    }
    return false;
    }
    // solve maximum clique and return size
    int clique::sizeClique(vector<vector<int> >& mat) {
    n = mat.size();
    // generate mask vectors
    for (int i = 0; i < n; ++i) {
    mask[i] = 0;
    for (int j = 0; j < n; ++j) if (mat[i][j] > 0) mask[i] |= ONE << j;
    }
    size = 0;
    for (int i = n - 1; i >= 0; --i) {
    search(i + 1, 1, mask[i], ONE << i);
    cmax[i] = size;
    }
    return size;
    }
    // solve maximum clique and return constitution
    // calls sizeClique and restore cons
    vector<int> clique::consClique(vector<vector<int> >& mat) {
    sizeClique(mat);
    vector<int> ret;
    for (int i = 0; i < n; ++i) if ((cons & (ONE << i)) > 0) ret.push_back(i);
    return ret;
    }
  • 相关阅读:
    VINS_Fusion IMU数据处理过程
    SLIC聚类算法
    视觉SLAM十四讲(第二版)第五讲笔记
    视觉SLAM十四讲(第二版)第四讲笔记
    视觉SLAM十四讲(第二版)第三章笔记
    g++命令总结
    第二次冲刺第一天
    11月21日
    11月20日
    11月19日
  • 原文地址:https://www.cnblogs.com/godoforange/p/11240543.html
Copyright © 2020-2023  润新知