• TorchVision 预训练模型进行推断


    torchvision.models 里包含了许多模型,用于解决不同的视觉任务:图像分类、语义分割、物体检测、实例分割、人体关键点检测和视频分类。

    本文将介绍 torchvision 中模型的入门使用,一起来创建 Faster R-CNN 预训练模型,预测图像中有什么物体吧。

    import torch
    import torchvision
    from PIL import Image
    

    创建预训练模型

    model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
    

    print(model) 可查看其结构:

    FasterRCNN(
      (transform): GeneralizedRCNNTransform(
          Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
          Resize(min_size=(800,), max_size=1333, mode='bilinear')
      )
      (backbone): BackboneWithFPN(
        ...
      )
      (rpn): RegionProposalNetwork(
        (anchor_generator): AnchorGenerator()
        (head): RPNHead(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (cls_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
          (bbox_pred): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (roi_heads): RoIHeads(
        (box_roi_pool): MultiScaleRoIAlign(featmap_names=['0', '1', '2', '3'], output_size=(7, 7), sampling_ratio=2)
        (box_head): TwoMLPHead(
          (fc6): Linear(in_features=12544, out_features=1024, bias=True)
          (fc7): Linear(in_features=1024, out_features=1024, bias=True)
        )
        (box_predictor): FastRCNNPredictor(
          (cls_score): Linear(in_features=1024, out_features=91, bias=True)
          (bbox_pred): Linear(in_features=1024, out_features=364, bias=True)
        )
      )
    )
    

    此预训练模型是于 COCO train2017 上训练的,可预测的分类有:

    COCO_INSTANCE_CATEGORY_NAMES = [
      '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
      'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
      'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
      'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
      'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
      'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
      'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
      'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
      'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
      'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
      'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
      'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
    ]
    

    指定 CPU or GPU

    获取支持的 device

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    

    模型移到 device

    model.to(device)
    

    读取输入图像

    img = Image.open('data/bicycle.jpg').convert("RGB")
    img = torchvision.transforms.ToTensor()(img)
    

    准备模型入参 images

    images = [img.to(device)]
    

    例图 data/bicycle.jpg

    进行模型推断

    模型切为 eval 模式:

    # For inference
    model.eval()
    

    模型在推断时,只需要给到图像数据,不用标注数据。推断后,会返回每个图像的预测结果 List[Dict[Tensor]]Dict 包含字段有:

    • boxes (FloatTensor[N, 4]): 预测框 [x1, y1, x2, y2], x 范围 [0,W], y 范围 [0,H]
    • labels (Int64Tensor[N]): 预测类别
    • scores (Tensor[N]): 预测评分
    predictions = model(images)
    pred = predictions[0]
    print(pred)
    

    预测结果如下:

    {'boxes': tensor([[750.7896,  56.2632, 948.7942, 473.7791],
            [ 82.7364, 178.6174, 204.1523, 491.9059],
            ...
            [174.9881, 235.7873, 351.1031, 417.4089],
            [631.6036, 278.6971, 664.1542, 353.2548]], device='cuda:0',
           grad_fn=<StackBackward>), 'labels': tensor([ 1,  1,  2,  1,  1,  1,  2,  2,  1, 77,  1,  1,  1,  2,  1,  1,  1,  1,
             1,  1, 27,  1,  1, 44,  1,  1,  1,  1, 27,  1,  1, 32,  1, 44,  1,  1,
            31,  2, 38,  2,  2,  1,  1, 31,  1,  1,  1,  1,  2,  1,  1,  1,  1,  1,
             1,  1,  1,  1,  1,  2,  2,  1,  1,  1,  2,  1,  1,  1,  1,  2,  1,  2,
             1,  1,  1,  1,  1,  1, 31,  2, 27,  1,  2,  1,  1, 31,  2, 77,  2,  1,
             2,  2,  2, 44,  2, 31,  1,  1,  1,  1], device='cuda:0'), 'scores': tensor([0.9990, 0.9976, 0.9962, 0.9958, 0.9952, 0.9936, 0.9865, 0.9746, 0.9694,
            0.9679, 0.9620, 0.9395, 0.8984, 0.8979, 0.8847, 0.8537, 0.8475, 0.7865,
            0.7822, 0.6896, 0.6633, 0.6629, 0.6222, 0.6132, 0.6073, 0.5383, 0.5248,
            0.4891, 0.4881, 0.4595, 0.4335, 0.4273, 0.4089, 0.4074, 0.3679, 0.3357,
            0.3192, 0.3102, 0.2797, 0.2655, 0.2640, 0.2626, 0.2615, 0.2375, 0.2306,
            0.2174, 0.2129, 0.1967, 0.1912, 0.1907, 0.1739, 0.1722, 0.1669, 0.1666,
            0.1596, 0.1586, 0.1473, 0.1456, 0.1408, 0.1374, 0.1373, 0.1329, 0.1291,
            0.1290, 0.1289, 0.1278, 0.1205, 0.1182, 0.1182, 0.1103, 0.1060, 0.1025,
            0.1010, 0.0985, 0.0959, 0.0919, 0.0887, 0.0886, 0.0873, 0.0832, 0.0792,
            0.0778, 0.0764, 0.0693, 0.0686, 0.0679, 0.0671, 0.0668, 0.0636, 0.0635,
            0.0607, 0.0605, 0.0581, 0.0578, 0.0572, 0.0568, 0.0557, 0.0556, 0.0555,
            0.0533], device='cuda:0', grad_fn=<IndexBackward>)}
    

    绘制预测结果

    获取 score >= 0.9 的预测结果:

    scores = pred['scores']
    mask = scores >= 0.9
    
    boxes = pred['boxes'][mask]
    labels = pred['labels'][mask]
    scores = scores[mask]
    

    引入 utils.plots.plot_image 绘制结果:

    from utils.colors import golden
    from utils.plots import plot_image
    
    lb_names = COCO_INSTANCE_CATEGORY_NAMES
    lb_colors = golden(len(lb_names), fn=int, scale=0xff, shuffle=True)
    lb_infos = [f'{s:.2f}' for s in scores]
    plot_image(img, boxes, labels, lb_names, lb_colors, lb_infos,
               save_name='result.png')
    

    utils.plots.plot_image 函数实现可见后文源码,注意其要求 torchvision >= 0.9.0/nightly

    源码

    utils.colors.golden:

    import colorsys
    import random
    
    
    def golden(n, h=random.random(), s=0.5, v=0.95,
               fn=None, scale=None, shuffle=False):
      if n <= 0:
        return []
    
      coef = (1 + 5**0.5) / 2
    
      colors = []
      for _ in range(n):
        h += coef
        h = h - int(h)
        color = colorsys.hsv_to_rgb(h, s, v)
        if scale is not None:
          color = tuple(scale*v for v in color)
        if fn is not None:
          color = tuple(fn(v) for v in color)
        colors.append(color)
    
      if shuffle:
        random.shuffle(colors)
      return colors
    

    utils.plots.plot_image:

    from typing import Union, Optional, List, Tuple
    
    import matplotlib.pyplot as plt
    import numpy as np
    import torch
    import torchvision
    from PIL import Image
    
    
    def plot_image(
      image: Union[torch.Tensor, Image.Image, np.ndarray],
      boxes: Optional[torch.Tensor] = None,
      labels: Optional[torch.Tensor] = None,
      lb_names: Optional[List[str]] = None,
      lb_colors: Optional[List[Union[str, Tuple[int, int, int]]]] = None,
      lb_infos: Optional[List[str]] = None,
      save_name: Optional[str] = None,
      show_name: Optional[str] = 'result',
    ) -> torch.Tensor:
      """
      Draws bounding boxes on given image.
      Args:
        image (Image): `Tensor`, `PIL Image` or `numpy.ndarray`.
        boxes (Optional[Tensor]): `FloatTensor[N, 4]`, the boxes in `[x1, y1, x2, y2]` format.
        labels (Optional[Tensor]): `Int64Tensor[N]`, the class label index for each box.
        lb_names (Optional[List[str]]): All class label names.
        lb_colors (List[Union[str, Tuple[int, int, int]]]): List containing the colors of all class label names.
        lb_infos (Optional[List[str]]): Infos for given labels.
        save_name (Optional[str]): Save image name.
        show_name (Optional[str]): Show window name.
      """
      if not isinstance(image, torch.Tensor):
        image = torchvision.transforms.ToTensor()(image)
    
      if boxes is not None:
        if image.dtype != torch.uint8:
          image = torchvision.transforms.ConvertImageDtype(torch.uint8)(image)
        draw_labels = None
        draw_colors = None
        if labels is not None:
          draw_labels = [lb_names[i] for i in labels] if lb_names is not None else None
          draw_colors = [lb_colors[i] for i in labels] if lb_colors is not None else None
        if draw_labels and lb_infos:
          draw_labels = [f'{l} {i}' for l, i in zip(draw_labels, lb_infos)]
        # torchvision >= 0.9.0/nightly
        #  https://github.com/pytorch/vision/blob/master/torchvision/utils.py
        res = torchvision.utils.draw_bounding_boxes(image, boxes,
          labels=draw_labels, colors=draw_colors)
      else:
        res = image
    
      if save_name or show_name:
        res = res.permute(1, 2, 0).contiguous().numpy()
        if save_name:
          Image.fromarray(res).save(save_name)
        if show_name:
          plt.gcf().canvas.set_window_title(show_name)
          plt.imshow(res)
          plt.show()
    
      return res
    

    参考

    GoCoding 个人实践的经验分享,可关注公众号!

  • 相关阅读:
    STL源代码剖析(二)
    局域网部署docker--从无到有创建自己的docker私有仓库
    Leetcode Add two numbers
    GDIPlus绘制桌面歌词
    Android中apk动态载入技术研究(2)android插件化及实现
    jq 地区(省市县区)联动菜单
    System.Diagnostics.Process.Start的妙用
    aaaa
    RESTful Web 服务:教程
    芒果TV 视频真实的地址获取
  • 原文地址:https://www.cnblogs.com/gocodinginmyway/p/14450628.html
Copyright © 2020-2023  润新知