• 基于mykernel2.0编写一个操作系统内核


    1. 实验环境配置-mykernel 2.0(参考https://github.com/mengning/mykernel )

    (1)本机环境:VMware®+ Ubuntu18.04.1 LTS

    (2)在Ubuntu环境中,右键打开terminal(默认在/home/user目录下,比如我就是/home/cj),按照下面的顺序配置实验环境

    wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install axel
    axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
    xz -d linux-5.4.34.tar.xz
    tar -xvf linux-5.4.34.tar
    cd linux-5.4.34
    patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
    make defconfig 10 make -j$(nproc) 
    sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage

     我的会拒接连接,我也不知道为什么,就直接用了群里同学发的这个文件,存放目录如下图

    sudo apt install axel

    axel:多线程下载工具

    sudo apt install build-essential gcc-multilib
    sudo apt install qemu #模拟器
    sudo apt install libncurses5-dev bison flex libssl-dev libelf-dev#编译内核的工具
    make allnoconfig
    make -j
    sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage

    配置成功后结果如下,从qemu窗口中您可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行

     

     按照上述流程,在模拟器编译之后,对于linux内核的编译,我们都有了基本的熟悉。

    2:基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义。 

    /*
     *  linux/mykernel/mypcb.h
     */
    
    //最大的任务数
    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8
    
    
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long       ip;
        unsigned long       sp;
    };
    
    
    typedef struct PCB{
        int pid;
        volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
        char stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long   task_entry;
        struct PCB *next;
    }tPCB;
    
    //调度函数
    void my_schedule(void);

    结构体Thread 结构体,用于存储当前进程中正在执行的线程的ip和sp,PCB结构体中的各个字段含义如下

    pid:进程号

    state:进程状态,-1表示就绪态,0表示运行态,大于0表示阻塞态

    stack:进程使用的堆栈

    thread:当前正在执行的线程信息

    task_entry:进程入口函数

    next:指向下一个PCB,系统中所有的PCB是以链表的形式组织起来的。

    3)对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度。

    #include "mypcb.h"
    
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movq %1,%%rsp
    	"  /* set task[pid].thread.sp to rsp */
            "pushq %1
    	"          /* push rbp */
            "pushq %0
    	"          /* push task[pid].thread.ip */
            "ret
    	"              /* pop task[pid].thread.ip to rip */
            :
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
        );
    }
    
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }
        }
    }

    (4)对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现

    #include "mypcb.h"
    
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    
    /*
     * Called by timer interrupt.
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        }
        time_count ++ ;
        return;
    }
    
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
    
        if(my_current_task == NULL
            || my_current_task->next == NULL)
        {
          return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
          my_current_task = next;
          printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
          /* switch to next process */
          asm volatile(
             "pushq %%rbp
    	"       /* save rbp of prev */
             "movq %%rsp,%0
    	"     /* save rsp of prev */
             "movq %2,%%rsp
    	"     /* restore  rsp of next */
             "movq $1f,%1
    	"       /* save rip of prev */
             "pushq %3
    	"
             "ret
    	"               /* restore  rip of next */
             "1:	"                  /* next process start here */
             "popq %%rbp
    	"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
          );
        }
        return;
    }

    (5)重新编译(linux 目录下make命令),再次运行,查看运行结果,可以看见进程的切换

    3:简要分析操作系统内核核心功能及运行工作机制

    (1)系统启动后,运行mymain.c中的my_start_kernel函数

    (2)myinterrupt.c,里面的my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1

    (3)my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,如此往复,来实现进程切换。

  • 相关阅读:
    mysql practice
    image update to ubuntu18.04
    C++11 new feature
    bazel remote executor--- buildfarm( in docker)
    python3学习笔记13(数据结构)
    python3学习笔记12(变量作用域)
    python3学习笔记11(函数)
    jmeter 01 之beanshell preprocessor
    python3学习笔记10(迭代器和生成器)
    python3学习笔记十(循环语句)
  • 原文地址:https://www.cnblogs.com/gmz-ustc/p/12873722.html
Copyright © 2020-2023  润新知