• face_recognition人脸识别框架


    一、环境搭建

    1.系统环境

    Ubuntu 17.04
    Python 2.7.14
    pycharm 开发工具

    2.开发环境,安装各种系统包

    • 人脸检测基于dlib,dlib依赖Boost和cmake
    $ sudo apt-get install build-essential cmake
    $ sudo apt-get install libgtk-3-dev
    $ sudo apt-get install libboost-all-dev
    • 其他重要的包
    $ pip install numpy
    $ pip install scipy
    $ pip install opencv-python
    $ pip install dlib
    • 安装 face_recognition
    # 安装 face_recognition
    $ pip install face_recognition
    # 安装face_recognition过程中会自动安装 numpy、scipy 等 

    二、使用教程

    1、facial_features文件夹

    此demo主要展示了识别指定图片中人脸的特征数据,下面就是人脸的八个特征,我们就是要获取特征数据

            'chin',
            'left_eyebrow',
            'right_eyebrow',
            'nose_bridge',
            'nose_tip',
            'left_eye',
            'right_eye',
            'top_lip',
            'bottom_lip'

    运行结果:

    自动识别图片中的人脸,并且识别它的特征

    原图:


    特征数据,数据就是运行出来的矩阵,也就是一个二维数组

    代码:

    # -*- coding: utf-8 -*-
    # 自动识别人脸特征
    # filename : find_facial_features_in_picture.py
    
    # 导入pil模块 ,可用命令安装 apt-get install python-Imaging
    from PIL import Image, ImageDraw
    # 导入face_recogntion模块,可用命令安装 pip install face_recognition
    import face_recognition
    
    # 将jpg文件加载到numpy 数组中
    image = face_recognition.load_image_file("chenduling.jpg")
    
    #查找图像中所有面部的所有面部特征
    face_landmarks_list = face_recognition.face_landmarks(image)
    
    print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))
    
    for face_landmarks in face_landmarks_list:
    
       #打印此图像中每个面部特征的位置
        facial_features = [
            'chin',
            'left_eyebrow',
            'right_eyebrow',
            'nose_bridge',
            'nose_tip',
            'left_eye',
            'right_eye',
            'top_lip',
            'bottom_lip'
        ]
    
        for facial_feature in facial_features:
            print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))
    
       #让我们在图像中描绘出每个人脸特征!
        pil_image = Image.fromarray(image)
        d = ImageDraw.Draw(pil_image)
    
        for facial_feature in facial_features:
            d.line(face_landmarks[facial_feature], width=5)
    
        pil_image.show() 

    2、find_face文件夹

    不仅能识别出来所有的人脸,而且可以将其截图挨个显示出来,打印在前台窗口

    原始的图片

    这里写图片描述

    识别的图片

    这里写图片描述

    代码:

    # -*- coding: utf-8 -*-
    #  识别图片中的所有人脸并显示出来
    # filename : find_faces_in_picture.py
    
    # 导入pil模块 ,可用命令安装 apt-get install python-Imaging
    from PIL import Image
    # 导入face_recogntion模块,可用命令安装 pip install face_recognition
    import face_recognition
    
    # 将jpg文件加载到numpy 数组中
    image = face_recognition.load_image_file("yiqi.jpg")
    
    # 使用默认的给予HOG模型查找图像中所有人脸
    # 这个方法已经相当准确了,但还是不如CNN模型那么准确,因为没有使用GPU加速
    # 另请参见: find_faces_in_picture_cnn.py
    face_locations = face_recognition.face_locations(image)
    
    # 使用CNN模型
    # face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")
    
    # 打印:我从图片中找到了 多少 张人脸
    print("I found {} face(s) in this photograph.".format(len(face_locations)))
    
    # 循环找到的所有人脸
    for face_location in face_locations:
    
            # 打印每张脸的位置信息
            top, right, bottom, left = face_location
            print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) 
    # 指定人脸的位置信息,然后显示人脸图片
            face_image = image[top:bottom, left:right]
            pil_image = Image.fromarray(face_image)
            pil_image.show() 

     3、know_face文件夹

    通过设定的人脸图片识别未知图片中的人脸

    # -*- coding: utf-8 -*-
    # 识别人脸鉴定是哪个人
    
    # 导入face_recogntion模块,可用命令安装 pip install face_recognition
    import face_recognition
    
    #将jpg文件加载到numpy数组中
    chen_image = face_recognition.load_image_file("chenduling.jpg")
    #要识别的图片
    unknown_image = face_recognition.load_image_file("sunyizheng.jpg")
    
    #获取每个图像文件中每个面部的面部编码
    #由于每个图像中可能有多个面,所以返回一个编码列表。
    #但是由于我知道每个图像只有一个脸,我只关心每个图像中的第一个编码,所以我取索引0。
    chen_face_encoding = face_recognition.face_encodings(chen_image)[0]
    print("chen_face_encoding:{}".format(chen_face_encoding))
    unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0]
    print("unknown_face_encoding :{}".format(unknown_face_encoding))
    
    known_faces = [
        chen_face_encoding
    ]
    #结果是True/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果
    results = face_recognition.compare_faces(known_faces, unknown_face_encoding)
    
    print("result :{}".format(results))
    print("这个未知面孔是 陈都灵 吗? {}".format(results[0]))
    print("这个未知面孔是 我们从未见过的新面孔吗? {}".format(not True in results)) 

    4、video文件夹

    通过调用电脑摄像头动态获取视频内的人脸,将其和我们指定的图片集进行匹配,可以告知我们视频内的人脸是否是我们设定好的

    实现:

    代码:

    # -*- coding: utf-8 -*-
    # 摄像头头像识别
    import face_recognition
    import cv2
    
    video_capture = cv2.VideoCapture(0)
    
    # 本地图像
    chenduling_image = face_recognition.load_image_file("chenduling.jpg")
    chenduling_face_encoding = face_recognition.face_encodings(chenduling_image)[0]
    
    # 本地图像二
    sunyizheng_image = face_recognition.load_image_file("sunyizheng.jpg")
    sunyizheng_face_encoding = face_recognition.face_encodings(sunyizheng_image)[0]
    
    # 本地图片三
    zhangzetian_image = face_recognition.load_image_file("zhangzetian.jpg")
    zhangzetian_face_encoding = face_recognition.face_encodings(zhangzetian_image)[0]
    
    # Create arrays of known face encodings and their names
    # 脸部特征数据的集合
    known_face_encodings = [
        chenduling_face_encoding,
        sunyizheng_face_encoding,
        zhangzetian_face_encoding
    ]
    
    # 人物名称的集合
    known_face_names = [
        "michong",
        "sunyizheng",
        "chenduling"
    ]
    
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # 读取摄像头画面
        ret, frame = video_capture.read()
    
        # 改变摄像头图像的大小,图像小,所做的计算就少
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # 根据encoding来判断是不是同一个人,是就输出true,不是为flase
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # 默认为unknown
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # if match[0]:
                #     name = "michong"
                # If a match was found in known_face_encodings, just use the first one.
                if True in matches:
                    first_match_index = matches.index(True)
                    name = known_face_names[first_match_index]
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
        # 将捕捉到的人脸显示出来
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # 矩形框
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            #加上标签
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display
        cv2.imshow('monitor', frame)
    
        # 按Q退出
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    video_capture.release()
    cv2.destroyAllWindows()
  • 相关阅读:
    java实现模拟登陆
    springboot整合kafka(转)
    springboot使用缓存(三)
    springboot使用缓存(二)
    springboot使用缓存(一)
    springboot日期入参出参格式化注解:@DateTimeFormat 和 @JsonFormat (转)
    H5调用android相机拍照
    时间复杂度
    java guide面试突击版
    java面试手册-复制内容
  • 原文地址:https://www.cnblogs.com/gmhappy/p/9472367.html
Copyright © 2020-2023  润新知