数据集简介
Market-1501 数据集在清华大学校园中采集,夏天拍摄,在 2015 年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄到的 1501 个行人、32668 个检测到的行人矩形框。每个行人至少由2个摄像头捕获到,并且在一个摄像头中可能具有多张图像。训练集有 751 人,包含 12,936 张图像,平均每个人有 17.2 张训练数据;测试集有 750 人,包含 19,732 张图像,平均每个人有 26.3 张测试数据。3368 张查询图像的行人检测矩形框是人工绘制的,而 gallery 中的行人检测矩形框则是使用DPM检测器检测得到的。该数据集提供的固定数量的训练集和测试集均可以在single-shot或multi-shot测试设置下使用。
目录结构
Market-1501
├── bounding_box_test
├── 0000_c1s1_000151_01.jpg
├── 0000_c1s1_000376_03.jpg
├── 0000_c1s1_001051_02.jpg
├── bounding_box_train
├── 0002_c1s1_000451_03.jpg
├── 0002_c1s1_000551_01.jpg
├── 0002_c1s1_000801_01.jpg
├── gt_bbox
├── 0001_c1s1_001051_00.jpg
├── 0001_c1s1_009376_00.jpg
├── 0001_c2s1_001976_00.jpg
├── gt_query
├── 0001_c1s1_001051_00_good.mat
├── 0001_c1s1_001051_00_junk.mat
├── query
├── 0001_c1s1_001051_00.jpg
├── 0001_c2s1_000301_00.jpg
├── 0001_c3s1_000551_00.jpg
└── readme.txt
目录介绍
1) “bounding_box_test”——用于测试集的 750 人,包含 19,732 张图像,前缀为 0000 表示在提取这 750 人的过程中DPM检测错的图(可能与query是同一个人),-1 表示检测出来其他人的图(不在这 750 人中)
2) “bounding_box_train”——用于训练集的 751 人,包含 12,936 张图像
3) “query”——为 750 人在每个摄像头中随机选择一张图像作为query,因此一个人的query最多有 6 个,共有 3,368 张图像
4) “gt_query”——matlab格式,用于判断一个query的哪些图片是好的匹配(同一个人不同摄像头的图像)和不好的匹配(同一个人同一个摄像头的图像或非同一个人的图像)
5) “gt_bbox”——手工标注的bounding box,用于判断DPM检测的bounding box是不是一个好的box
命名规则
以 0001_c1s1_000151_01.jpg 为例
1) 0001 表示每个人的标签编号,从0001到1501;
2) c1 表示第一个摄像头(camera1),共有6个摄像头;
3) s1 表示第一个录像片段(sequece1),每个摄像机都有数个录像段;
4) 000151 表示 c1s1 的第000151帧图片,视频帧率25fps;
5) 01 表示 c1s1_001051 这一帧上的第1个检测框,由于采用DPM检测器,对于每一帧上的行人可能会框出好几个bbox。00 表示手工标注框
测试协议
Cumulative Matching Characteristics (CMC) curves 是目前行人重识别领域最流行的性能评估方法。考虑一个简单的 single-gallery-shot 情形,每个数据集中的ID(gallery ID)只有一个实例. 对于每一次的识别(query), 算法将根据要查询的图像(query) 到所有gallery samples的距离从小到大排序,CMC top-k accuracy 计算如下:
Acc_k = 1, if top-k ranked gallery samples contain query identity
Acc_k = 0, otherwise
这是一个 shifted step function, 最终的CMC 曲线(curve) 通过对所有queries的shifted step functions取平均得到。尽管在 single-gallery-shot 情形下,CMC 有很明确的定义,但是在 multi-gallery-shot 情形下,它的定义并不明确,因为每个gallery identity 可能存在多个instances.
Market-1501中 Query 和 gallery 集可能来自相同的摄像头视角,但是对于每个query identity, 他/她的来自同一个摄像头的 gallery samples 会被排除掉。对于每个 gallery identity,他们不会只随机采样一个instance. 这意味着在计算CMC时, query 将总是匹配 gallery 中“最简单”的正样本,而不关注其他更难识别的正样本。bounding_box_test 文件夹是 gallery 样本,bounding_box_train 文件夹是 train 样本,query 文件夹是 query 样本
由上面可以看出,在 multi-gallery-shot 情形下,CMC评估具有缺陷。因此,也使用 mAP(mean average precsion)作为评估指标。mAP可认为是PR曲线下的面积,即平均的查准率。
下载地址
State of the art
Citation
If you use this dataset, please kindly cite this paper:
@inproceedings{zheng2015scalable,
title={Scalable Person Re-identification: A Benchmark},
author={Zheng, Liang and Shen, Liyue and Tian, Lu and Wang, Shengjin and Wang, Jingdong and Tian, Qi},
booktitle={Computer Vision, IEEE International Conference on},
year={2015}
}
参考文献
- Zheng, Liang, et al. “Scalable Person Re-identification: A Benchmark.” IEEE International Conference on Computer Vision IEEE Computer Society, 2015:1116-1124.
- Liang Zheng
- Person re-ID