题目描述
题解
因为换了题所以1h怒写exp然后跑不动
生成函数乱推即可
(ans=sum_{i=n}^{m}(m-i)[x^i](sum_{j>=1} j(j+2k)x^j)^n)
有(sum_i x^i=frac{1}{1-x}),(sum_i ix^i=frac{x}{(1-x)^2}),(sum_i i^2x^i=frac{2x}{(1-x)^3}-frac{x}{(1-x)^2})
代入到后面的提出(frac{1}{(1-x)^2}),二项式展开后交换ij,把生成函数换成组合数,发现求的是一列乘上m-i的值,简单转化即可
code
#include <bits/stdc++.h>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define add(a,b) a=((a)+(b))%mod
#define mod 998244353
#define Mod 998244351
#define ll long long
#define N 4000000
//#define file
using namespace std;
ll jc[N+1],Jc[N+1],ans,Ans;
int n,m,K,i,j,k,l;
ll qpower(ll a,int b) {ll ans=1; while (b) {if (b&1) ans=ans*a%mod;a=a*a%mod;b>>=1;} return ans;}
ll C(int n,int m) {if (n<m) return 0;return jc[n]*Jc[m]%mod*Jc[n-m]%mod;}
int main()
{
#ifdef file
freopen("d.in","r",stdin);
#endif
jc[0]=1;
fo(i,1,N) jc[i]=jc[i-1]*i%mod;
Jc[N]=qpower(jc[N],Mod);
fd(i,N-1,0) Jc[i]=Jc[i+1]*(i+1)%mod;
scanf("%d%d%d",&n,&m,&K);
if (n>m) {printf("0
");return 0;}
fo(j,0,n)
{
Ans=(C((m-1)+2*n-j-1+2,3*n-j-1+2)-C(n+2*n-j-1,3*n-j-1+1)*(m-n)-C(n+2*n-j-1+1,3*n-j-1+2))%mod;
// fo(j,0,n)
// add(ans,1ll*(m-i)*C(n,j)%mod*C(i-n-1+(n*3-j),n*3-j-1)%mod*qpower(2,n-j)%mod*qpower(2*K-1,j));
add(ans,Ans*C(n,j)%mod*qpower(2,n-j)%mod*qpower(2*K-1,j));
}
printf("%lld
",(ans+mod)%mod);
fclose(stdin);
fclose(stdout);
return 0;
}