• PE427.n-sequences


    题目大意

    定义一个串的值为最长相同子串长度,求所有长度为n的每项为[1,n]的所有串的值之和模1e9+9

    题解

    推完就对了很奇妙

    先求至多为m的答案

    (ans_m=[x^n]nsum_{i=0}^{infty} (n-1)^i(sum_{j=1}^m x^j)^{i+1})

    (=[x^n]frac{n}{n-1}sum_{i=1}^{infty} (n-1)^i(sum_{j=1}^m x^j)^i)

    (F=(n-1)sum_{i=1}^m x^i=(n-1)frac{x^{m+1}-x}{x-1})

    (ans_m=[x^n]frac{n}{n-1}sum_{i=1}^{infty} F^i)

    (=[x^n]frac{n}{n-1}*frac{F}{1-F})

    (=[x^n]frac{n}{n-1}*(frac{1}{1-F}-1))

    -1没有影响可以去掉

    (=[x^n]frac{n}{n-1}*frac{1-x}{1-(nx-(n-1)x^{m+1})})

    分母展开成无穷级数,枚举(-(n-1)x^{m+1})的次数来计算,(nx)的次数就用(n)减一下得到

    因为实际上是个((a+b)^i)的形式,所以当b的次数和总次数确定时只有一项算到

    枚举m,时间复杂度是调和级数的形式,预处理幂可以做到O(n log n),跑6s左右

    最后的(Ans=sum_i i*(ans_i-ans_{i-1}))

    code

    #pragma GCC optimize(3)
    #include <bits/stdc++.h>
    #define fo(a,b,c) for (a=b; a<=c; a++)
    #define fd(a,b,c) for (a=b; a>=c; a--)
    #define C(n,m) (jc[n]*Jc[m]%mod*Jc[(n)-(m)]%mod)
    #define add(a,b) a=((a)+(b))%mod
    #define mod 1000000009
    #define Mod 1000000007
    #define ll long long
    #define file
    using namespace std;
    
    ll jc[7500001],Jc[7500001],Ans[7500001],p1[7500001],p2[7500001],ans;
    int n,i,j,k,l;
    
    ll qpower(ll a,int b) {ll ans=1; while (b) {if (b&1) ans=ans*a%mod;a=a*a%mod;b>>=1;} return ans;}
    
    int main()
    {
    	#ifdef file
    	freopen("PE427.in","r",stdin);
    	#endif
    	
    	scanf("%d",&n);
    	jc[0]=1;
    	fo(i,1,n) jc[i]=jc[i-1]*i%mod;
    	Jc[n]=qpower(jc[n],Mod);
    	fd(i,n-1,0) Jc[i]=Jc[i+1]*(i+1)%mod;
    	
    	p1[0]=p2[0]=1;
    	fo(i,1,n) p1[i]=p1[i-1]*(-(n-1))%mod,p2[i]=p2[i-1]*n%mod;
    	
    	fo(i,1,n)
    	{
    		fo(j,0,n)
    		if ((i+1)*j<=n)
    		{
    			add(Ans[i],p1[j]*p2[n-(i+1)*j]%mod*C(j+(n-(i+1)*j),j));
    			if ((i+1)*j<n)
    			add(Ans[i],-p1[j]*p2[n-(i+1)*j-1]%mod*C(j+(n-(i+1)*j-1),j));
    		}
    		else
    		break;
    	}
    	fo(i,1,n) add(ans,(Ans[i]-Ans[i-1])*i);
    	
    	printf("%lld
    ",(ans+mod)%mod*n%mod*qpower(n-1,Mod)%mod);
    	
    	fclose(stdin);
    	fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    虚拟化资料
    Windows线程+进程通信
    Linux进程+进程间通信IPC
    COM/DOM/COM+
    C# 2.0新特性与C# 3.5新特性[转]
    [CruiseControl]配置文件config.xml
    C#的Delegate和Event
    [BuildRelease Management]Visual Build
    软件培训机构
    可以自动输入密码的Runas
  • 原文地址:https://www.cnblogs.com/gmh77/p/13485562.html
Copyright © 2020-2023  润新知