• 6359. 【NOIP2019模拟2019.9.15】小ω的树(tree)(定期重构)


    题目描述



    题解

    qy的毒瘤题

    CSP搞这种码农题当场手撕出题人

    先按照边权从大到小建重构树,然后40%暴力修改+查找即可

    100%可以定期重构+平衡规划,每次把B个询问拉出来建虚树,在虚树上暴力维护每一段的凸壳,在凸壳上二分

    虚树建法:

    按照dfs序排序,每次用栈维护从根到当前点的栈

    每次把当前点和栈顶做lca,若lca=栈顶就直接加,否则一直弹到栈顶是lca的祖先,顺便记录下每个点在虚树上的父亲

    如果栈顶=之前的lca就不用管,否则加上lca,修改最后弹出的点的父亲

    (注意要把根加进去)


    设每次搞B个询问,那么时间为(O(QBlog n+frac{Qn}{B})),极限数据下函数长这样:

    可以看出,实际最优的B为(sqrt{frac{n}{log n}}),但由于常数等原因这样取会被卡成SB

    所以B取(sqrt{n})就可以过了(

    code

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cmath>
    #define fo(a,b,c) for (a=b; a<=c; a++)
    #define fd(a,b,c) for (a=b; a>=c; a--)
    #define inc(x,y) (bg[x]<=bg[y] && ed[y]<=ed[x])
    #define min(a,b) (a<b?a:b)
    #define max(a,b) (a>b?a:b)
    using namespace std;
    
    struct type{
    	int x,y,s;
    } b[300001];
    struct Type{
    	int x,s,id;
    } A[30001];
    int c[600001];
    int C[2001];
    long long d[600001][2];
    double dx[600001];
    int l2[600001];
    int r2[600001];
    int w[600001];
    int v[600001]; //bian
    long long sum[600001];
    int fa[600001][20];
    int fa2[600001];
    int son[600001][2];
    int bg[600001];
    int ed[600001];
    int D[600001];
    int Fa[600001];
    long long ans[30001];
    bool bz[600001];
    int p[2001];
    long long X[600001];
    long long ANS[600001];
    int d2[600001][2];
    bool Bz[600001];
    int n,Q,B,i,j,k,l,N,L,R,T,I,tot;
    long long Ans,S;
    
    bool cmp(type a,type b)
    {
    	return a.s>b.s;
    }
    bool Cmp(Type a,Type b)
    {
    	return bg[a.x]<bg[b.x];
    }
    bool Cmp2(Type a,Type b)
    {
    	return a.id<b.id;
    }
    
    int gf(int t)
    {
    	int i,t2;
    	
    	t2=0;
    	while (Fa[t]!=t)
    	{
    		d2[++t2][0]=t;
    		t=Fa[t];
    	}
    	fo(i,1,t2)
    	Fa[d2[i][0]]=t;
    	
    	return t;
    }
    
    void dfs()
    {
    	int i,j,k,l,T,t2;
    	
    	t2=1;
    	d2[1][0]=N;
    	d2[1][1]=0;
    	while (t2)
    	{
    		T=t2;
    		
    		if (!d2[t2][1])
    		{
    			D[d2[t2][0]]=D[fa[d2[t2][0]][0]]+1;
    			bg[d2[t2][0]]=++j;
    			
    			fo(i,1,19)
    			fa[d2[t2][0]][i]=fa[fa[d2[t2][0]][i-1]][i-1];
    		}
    		if (d2[t2][1]<=1)
    		{
    			if (son[d2[t2][0]][d2[t2][1]])
    			{
    				++t2;
    				d2[t2][0]=son[d2[T][0]][d2[T][1]];
    				d2[t2][1]=0;
    			}
    			
    			++d2[T][1];
    		}
    		else
    		{
    			ed[d2[t2][0]]=j;
    			--t2;
    		}
    	}
    }
    
    void swap(int &x,int &y)
    {
    	int z=x;
    	x=y;
    	y=z;
    }
    
    int lca(int x,int y)
    {
    	int i;
    	
    	if (D[x]<D[y]) swap(x,y);
    	
    	fd(i,19,0)
    	if (D[fa[x][i]]>=D[y])
    	x=fa[x][i];
    	
    	fd(i,19,0)
    	if (fa[x][i]!=fa[y][i])
    	{
    		x=fa[x][i];
    		y=fa[y][i];
    	}
    	
    	if (x!=y) x=fa[x][0];
    	return x;
    }
    
    void init()
    {
    	int i,j,k,l;
    	
    	scanf("%d%d",&n,&Q);//B=floor(sqrt((n+n)/(log(n)/log(2)+1)));
    	B=floor(sqrt(n));
    	fo(i,1,n)
    	scanf("%d",&w[i]);
    	fo(i,1,n-1)
    	scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].s);
    	
    	sort(b+1,b+(n-1)+1,cmp);
    	
    	fo(i,1,n+n-1)
    	Fa[i]=i;
    	
    	fo(i,1,n)
    	sum[i]=w[i];
    	
    	fo(i,1,n-1)
    	{
    		sum[n+i]=sum[gf(b[i].x)]+sum[gf(b[i].y)];
    		
    		fa[Fa[b[i].x]][0]=n+i;
    		fa[Fa[b[i].y]][0]=n+i;
    		son[n+i][0]=Fa[b[i].x];
    		son[n+i][1]=Fa[b[i].y];
    		
    		Fa[Fa[b[i].x]]=n+i;
    		Fa[Fa[b[i].y]]=n+i;
    		
    		v[n+i]=b[i].s;
    	}
    }
    
    void build() //xushu
    {
    	int i,j,k,l;
    	
    	sort(A+L,A+R+1,Cmp);
    	
    	l=1;
    	p[1]=N,bz[N]=1;
    	
    	fo(i,L,R)
    	if (!l || p[l]!=A[i].x)
    	{
    		if (!l)
    		p[++l]=A[i].x;
    		else
    		{
    			k=lca(p[l],A[i].x);
    			
    			if (k==p[l])
    			p[++l]=A[i].x,bz[p[l]]=1;
    			else
    			{
    				while (l && !inc(p[l],k))
    				{
    					fa2[p[l]]=p[l-1];
    					--l;
    				}
    				
    				if (p[l]!=k)
    				{
    					fa2[p[l+1]]=k;
    					p[++l]=k,bz[k]=1;
    				}
    			}
    			
    			p[++l]=A[i].x,bz[A[i].x]=1;
    		}
    	}
    	fd(i,l,1)
    	fa2[p[i]]=p[i-1];
    	
    	sort(A+L,A+R+1,Cmp2);
    	
    	tot=0;
    	fo(i,1,N)
    	if (bz[i])
    	C[++tot]=i;
    }
    
    void dfs2() //others
    {
    	int i,T,t2;
    	
    	t2=1;
    	d2[1][0]=N;
    	d2[1][1]=0;
    	while (t2)
    	{
    		T=t2;
    		
    		if (!d2[t2][1])
    		Bz[d2[t2][0]]=bz[d2[t2][0]];
    		
    		if (d2[t2][1]<=1)
    		{
    			if (son[d2[t2][0]][d2[t2][1]])
    			{
    				++t2;
    				d2[t2][0]=son[d2[T][0]][d2[T][1]];
    				d2[t2][1]=0;
    			}
    			
    			++d2[T][1];
    		}
    		else
    		{
    			if (!Bz[d2[t2][0]])
    			Ans=max(Ans,sum[d2[t2][0]]*v[d2[t2][0]]);
    			
    			if (t2>1)
    			Bz[d2[t2-1][0]]|=Bz[d2[t2][0]];
    			--t2;
    		}
    	}
    }
    
    long long find(int t,int x)
    {
    	int i;
    	long long ans=0;
    	
    	fo(i,l2[t],r2[t])
    	ans=max(ans,d[i][0]*x+d[i][1]);
    	
    	if (l2[t]>r2[t]) return 0;
    	if (l2[t]==r2[t]) return d[l2[t]][0]*x+d[l2[t]][1];
    	
    	int l=l2[t],r=r2[t]-1,mid;
    	
    	while (l<r)
    	{
    		mid=(l+r)/2;
    		
    		if (dx[mid]<=x)
    		l=mid+1;
    		else
    		r=mid;
    	}
    	if (dx[l]<=x)
    	++l;
    	
    	return d[l][0]*x+d[l][1];
    }
    
    void Init() //zhixian
    {
    	int I,i,j,k,l=0;
    	long long K,B;
    	
    	fo(I,1,tot)
    	{
    		i=C[I];
    		
    		l2[i]=l+1;
    		
    		T=0;
    		if (i>n)
    		{
    			T=1;
    			c[1]=i;
    			
    			j=fa[i][0];
    			while (j && !bz[j])
    			{
    				c[++T]=j;
    				j=fa[j][0];
    			}
    		}
    		else
    		{
    			j=fa[i][0];
    			while (j && !bz[j])
    			{
    				c[++T]=j;
    				j=fa[j][0];
    			}
    		}
    		
    		fd(j,T,1)
    		{
    			if (l2[i]>l)
    			{
    				++l;
    				d[l][0]=v[c[j]];
    				d[l][1]=sum[c[j]]*v[c[j]];
    			}
    			else
    			{
    				K=v[c[j]];
    				B=sum[c[j]]*v[c[j]];
    				
    				while (l2[i]<l && dx[l-1]*K+B>=dx[l-1]*d[l][0]+d[l][1])
    				--l;
    				
    				if (d[l][0]!=K)
    				{
    					++l;
    					d[l][0]=K;
    					d[l][1]=B;
    					dx[l-1]=(double)(d[l][1]-d[l-1][1])/(d[l-1][0]-d[l][0]);
    				}
    			}
    		}
    		r2[i]=l;
    		
    		ANS[i]=find(i,0);
    	}
    }
    
    void work(int t)
    {
    	while (t)
    	{
    		X[t]+=S;
    		ANS[t]=find(t,X[t]);
    		
    		t=fa2[t];
    	}
    }
    
    void find()
    {
    	int i;
    	
    	fo(i,1,tot)
    	ans[A[I].id]=max(ans[A[I].id],ANS[C[i]]);
    }
    
    void Build()
    {
    	int i,T,t2;
    	
    	t2=1;
    	d2[1][0]=N;
    	d2[1][1]=0;
    	while (t2)
    	{
    		T=t2;
    		
    		if (!d2[t2][1])
    		sum[d2[t2][0]]=w[d2[t2][0]];
    		
    		if (d2[t2][1]<=1)
    		{
    			if (son[d2[t2][0]][d2[t2][1]])
    			{
    				++t2;
    				d2[t2][0]=son[d2[T][0]][d2[T][1]];
    				d2[t2][1]=0;
    			}
    			
    			++d2[T][1];
    		}
    		else
    		{
    			if (!Bz[d2[t2][0]])
    			Ans=max(Ans,sum[d2[t2][0]]*v[d2[t2][0]]);
    			
    			if (t2>1)
    			sum[d2[t2-1][0]]+=sum[d2[t2][0]];
    			--t2;
    		}
    	}
    }
    
    int main()
    {
    	freopen("tree.in","r",stdin);
    	freopen("tree.out","w",stdout);
    	
    	init();
    	
    	N=n+n-1;
    	j=0;
    	dfs();
    	
    	fo(i,1,Q)
    	scanf("%d%d",&A[i].x,&A[i].s),A[i].id=i;
    	
    	for (L=1; L<=Q; L+=B)
    	{
    		Ans=0;
    		tot=0;
    		T=0;
    		
    		R=min(L+B-1,Q);
    		build();
    		dfs2();
    		Init();
    		
    		fo(I,L,R)
    		{
    			ans[A[I].id]=Ans;
    			S=A[I].s-w[A[I].x];
    			
    			work(A[I].x);
    			find();
    			
    			w[A[I].x]=A[I].s;
    		}
    		
    		Build();
    		
    		fo(i,1,tot)
    		bz[C[i]]=0,X[C[i]]=0;
    	}
    	
    	fo(i,1,Q)
    	printf("%lld
    ",ans[i]);
    	
    	fclose(stdin);
    	fclose(stdout);
    	
    	return 0;
    }
    
  • 相关阅读:
    ebs R12 支持IE11
    reloc: Permission denied
    3.23考试小记
    3.21考试小记
    3.20考试小记
    3.17考试小记
    3.15考试小记
    3.13考试小记
    3.12考试小记
    3.10考试小记
  • 原文地址:https://www.cnblogs.com/gmh77/p/11544262.html
Copyright © 2020-2023  润新知