动手动脑
1.枚举类型
枚举类型 enum Size{ SMALL , MEDIUM , LARGE }
使用: Size s=Size.SMALL;
//从字串转换为枚举 Size t=Size.valueof(“SMALL”);
注意:枚举类型仅适用于JDK 5.0及更新的版本.
枚举值的foreach迭代
private enum MyEnum{
ONE, TWO, THREE
}
public static void main(String[] args) {
for(MyEnum value:MyEnum.values()){
System.out.println(value);
}
}注意:枚举可用于switch语句中。
public class EnumTest {
public static void main(String[] args) {
Size s=Size.SMALL;
Size t=Size.LARGE;
//s和t引用同一个对象?
System.out.println(s==t); //
//是原始数据类型吗?
System.out.println(s.getClass().isPrimitive());
//从字符串中转换
Size u=Size.valueOf("SMALL");
System.out.println(s==u); //true
//列出它的所有值
for(Size value:Size.values()){
System.out.println(value);
}
}
}
enum Size{SMALL,MEDIUM,LARGE};
枚举类型是引用类型!
枚举不属于原始数据类型,它的每个具体值都引用一个特定的对象。相同的值则引用同一个对象。
可以使用“==”和equals()方法直接比对枚举变量的值,换句话说,对于枚举类型的变量,“==”和equals()方法执行的结果是等价的。
2.
以下代码的输出结果是什么?
int X=100;
int Y=200;
System.out.println("X+Y="+X+Y);
System.out.println(X+Y+"=X+Y");
为什么会有这样的输出结果?
第一个只是依次输出x y的值第二个是先运算x+y的值在输出,若使第一个输出值须加括号。
动手实验
1
public class TestDouble {
public static void main(String args[]) {
System.out.println("0.05 + 0.01 = " + (0.05 + 0.01));
System.out.println("1.0 - 0.42 = " + (1.0 - 0.42));
System.out.println("4.015 * 100 = " + (4.015 * 100));
System.out.println("123.3 / 100 = " + (123.3 / 100));
}
}
使用double类型的数值进行计算, 其结果是不精确的。
为什么double类型的数值进行运算得不到“数学上精确”的结果?
double类型的数值占用64bit,即64个二进制数,除去最高位表示正负符号的位,在最低位上一定会与实际数据存在误差(除非实际数据恰好是2的n次方)。
import java.math.BigDecimal;
public class TestBigDecimal
{
public static void main(String[] args)
{
BigDecimal f1 = new BigDecimal("0.05");
BigDecimal f2 = BigDecimal.valueOf(0.01);
BigDecimal f3 = new BigDecimal(0.05);
System.out.println("下面使用String作为BigDecimal构造器参数的计算结果:");
System.out.println("0.05 + 0.01 = " + f1.add(f2));
System.out.println("0.05 - 0.01 = " + f1.subtract(f2));
System.out.println("0.05 * 0.01 = " + f1.multiply(f2));
System.out.println("0.05 / 0.01 = " + f1.divide(f2));
System.out.println("下面使用double作为BigDecimal构造器参数的计算结果:");
System.out.println("0.05 + 0.01 = " + f3.add(f2));
System.out.println("0.05 - 0.01 = " + f3.subtract(f2));
System.out.println("0.05 * 0.01 = " + f3.multiply(f2));
System.out.println("0.05 / 0.01 = " + f3.divide(f2));
}
}
注意:在构建BigDecimal对象时应使用字符串而不是double数值,否则,仍有可能引发计算精度问题。
反码 补码 原码
1. 原码
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:
[1111 1111 , 0111 1111]
即
[-127 , 127]
原码是人脑最容易理解和计算的表示方式.
2. 反码
反码的表示方法是:
正数的反码是其本身
负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.
3. 补码
补码的表示方法是:
正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.
三. 为何要使用原码, 反码和补码
在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.
现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:
[+1] = [00000001]原 = [00000001]反 = [00000001]补
所以不需要过多解释. 但是对于负数:
[-1] = [10000001]原 = [11111110]反 = [11111111]补
可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?
首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.
于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.
为了解决原码做减法的问题, 出现了反码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.
于是补码的出现, 解决了0的符号以及两个编码的问题:
1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原
这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:
(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补
-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)
使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].
因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.