• light oj 1088 (二分)


    Description

    Given n points (1 dimensional) and q segments, you have to find the number of points that lie in each of the segments. A point pi will lie in a segment A B if A ≤ pi ≤ B.

    For example if the points are 1, 4, 6, 8, 10. And the segment is 0 to 5. Then there are 2 points that lie in the segment.


    Input

    Input starts with an integer T (≤ 5), denoting the number of test cases.

    Each case starts with a line containing two integers n (1 ≤ n ≤ 105) and q (1 ≤ q ≤ 50000). The next line contains n space separated integers denoting the points in ascending order. All the integers are distinct and each of them range in [0, 108].

    Each of the next q lines contains two integers Ak Bk (0 ≤ Ak ≤ Bk ≤ 108) denoting a segment.

    Output

    For each case, print the case number in a single line. Then for each segment, print the number of points that lie in that segment.

    Sample Input

    1

    5 3

    1 4 6 8 10

    0 5

    6 10

    7 100000

    Sample Output

    Case 1:

    2

    3

    2

    题意为给出一串数,再给出两个数 ,查找这串数中有多少个数字在这两个数之间。

    开始想到了线段树,不会写啊~~~。看到大家纷纷ac想一定有其他办法,经过巨巨的提醒因为于数据量很大,所以用二分枚举区间的起始点和终点在数列中的位置。
    这道题的两个函数的返回值很值得推敲,开始还云里雾里的我,推了几次就明白了这个逻辑。(由于输入输出量很大,还应该用scanf printf,用了cin cout会超时的)。
     
     
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e5+5;
    int a[maxn];
    int n,m;
    
    int _lower(int l){
    	int L,R,mid;
    	L = 1; R = n; mid = 0;
    	while(L<=R){
    		mid=(L+R)>>1;
    		if(a[mid]<l) L=mid+1;
    		if(a[mid]>l) R=mid-1;
    		if(a[mid]==l) return mid;
    	}
    	return L;
    }
    
    int _higher(int r){
    	int L,R,mid;
    	L = 1; R = n; mid = 0;
    	while(L<=R){
    		mid=(L+R)>>1;
    		if(a[mid]>r) R=mid-1;
    		if(a[mid]<r) L=mid+1;
    		if(a[mid]==r) return mid;
    	}
    	return R;
    }
    
    int main(){
    	int T,l,r,t,ll,rr;
    	scanf("%d",&T);
    	t = 1;ll = rr = 0;
    	while(T--){
    		scanf("%d %d",&n,&m);
    		for(int i=1;i<=n;i++){
    			scanf("%d",&a[i]);
    		}
    		printf("Case %d:
    ",t++);
    		for(int i=1;i<=m;i++){
    			scanf("%d %d",&l,&r);
    			ll=_lower(l);
    			rr=_higher(r);
    			printf("%d
    ",rr-ll+1);
    		}
    	}
    	return 0;
    }
    
     
     
  • 相关阅读:
    方法的调用,管道的演示,返回多个值,包的概念
    GO的安装
    React--后台管理系统--项目框架的搭建
    将字符串转换为整数--在处理-保留任意小数
    安装react-app脚手架
    git参考手册
    Python切片
    python字符串常用方法、分割字符串等
    python-字符串格式化
    python-列表增删改查、排序、两个list合并、多维数组等
  • 原文地址:https://www.cnblogs.com/gjy963478650/p/7301797.html
Copyright © 2020-2023  润新知