之前有写过HashMap的底层原理,今天再来写写线程安全的ConcurrentHashMap:
在回顾一下之前的知识点吧:
- HashMap :
HashMap是线程不安全的,在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的。
- HashTable :
HashTable和HashMap的实现原理几乎一样,差别无非是
1.HashTable不允许key和value为null;
2.HashTable是线程安全的。
但是HashTable线程安全的策略实现代价却太大了,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。
如图所示:
HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。
如下图示:
- ConcurrentHashMap
ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。
并且注意到,Segment是final的。
final Segment<K,V>[] segments;
Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。
在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行)。
所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。
再强调一遍——Segment类似于HashMap,一个Segment维护着一个HashEntry数组。而HashEntry数组是:
transient volatile HashEntry<K,V>[] table;
HashEntry是目前我们提到的最小的逻辑处理单元了。
也就是说:一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。
static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; //其他省略 }
我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法:
Segment(float lf, int threshold, HashEntry<K,V>[] tab) { this.loadFactor = lf;//负载因子 this.threshold = threshold;//阈值 this.table = tab;//主干数组即HashEntry数组 }
我们来看下ConcurrentHashMap的构造方法:
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536 if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5 int sshift = 0; //ssize 为segments数组长度,根据concurrentLevel计算得出 int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } //segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲 this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方. int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; //创建segments数组并初始化第一个Segment,其余的Segment延迟初始化 Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); this.segments = ss; }
初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。
从上面的代码可以看出来:
Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。
为什么Segment的数组大小一定是2的次幂?
其实主要是便于通过按位与的散列算法来定位Segment的index。至于更详细的原因,有兴趣的话可以参考另一篇文章《HashMap实现原理及源码分析》,其中对于数组长度为什么一定要是2的次幂有较为详细的分析。
接下来,我们来看看put方法:
public V put(K key, V value) { Segment<K,V> s; //concurrentHashMap不允许key/value为空 if (value == null) throw new NullPointerException(); //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀 int hash = hash(key); //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment int j = (hash >>> segmentShift) & segmentMask; //在这里用到了segmentShift和segmentMask,定位segment; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); }
从源码看出,put的主要逻辑也就两步:
1.定位segment并确保定位的Segment已初始化 ;
2.调用Segment的put方法。
关于segmentShift和segmentMask
segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。
segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性
segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。
get/put方法
get方法
public V get(Object key) { Segment<K,V> s; HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; //先定位Segment,再定位HashEntry if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。
来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
//tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),
//若找不到,则创建HashEntry。tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。
//若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。
HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value);
V oldValue; try { HashEntry<K,V>[] tab = table;
//定位hashEntry,可以看到,这个hash值在定位segment时,和在segment中定位HashEntry都会
//用到,只不过定位Segment时,只用到了高几位。 int index = (tab.length - 1) & hash; HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; //若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。
//这样可以最大程度避免之前散列好的entry重新散列,具体在另一篇文章中有详细分析,不赘述。
//扩容并rehash的这个过程是比较消耗资源的。 if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }
Over...
参考:
2. 面试必问的ConcurrentHashMap实现原理:数据结构、get与put操作(这一篇比较形象,把源码中每一段都有注释,可以参考着看)
3. ConcurrentHashMap原理分析 (这篇详细讲解了一下初始化、put操作、get操作过程)