Double integration of raw acceleration data is a pretty poor estimate for displacement. The reason is that at each integration, you are compounding the noise in the data.
If you are dead set on working in the
time-domain, the best results come from the
following steps.
1. Remove the mean from your sample (now have zero-mean
sample)
2. Integrate once to get velocity using some rule (trapezoidal,
etc.)
3. Remove the mean from the velocity
4. Integrate again to get displacement.
5. Remove the mean. Note, if you plot this, you will see drift over
time.
6. To eliminate (some to most) of the drift (trend), use a
least squares fit (high degree depending on data) to determine
polynomial coefficients.
7. Remove the least squares polynomial function from your data.
A much better way to get displacement from acceleration data is to work in the frequency domain. To do this, follow these steps...
1. Remove the mean from the accel. data
2. Take the Fourier transform (FFT) of the accel. data.
3. Convert the transformed accel. data to displacement data by
dividing each element by -omega^2, where omega is the frequency
band.
4. Now take the inverse FFT to get back to the time-domain and
scale your result.
This will give you a much better estimate of displacement.
时域积分
频域积分
可见恢复信号都很好(对于50Hz是这样的效果)。
时域积分
频域积分
可以看到频域积分得到信号更好,时域积分随着信号频率的升高恢复的正弦幅值会降低。
对此可以用滤波的方法将大的趋势项去掉。
% 测试积分对正弦信号的作用
clc
clear
close all
%% 原始正弦信号
ts = 0.001;
fs = 1/ts;
t = 0:ts:1000*ts;
f = 50;
dis = sin(2*pi*f*t); % 位移
vel = 2*pi*f.*cos(2*pi*f*t); % 速度
acc = -(2*pi*f).^2.*sin(2*pi*f*t); % 加速度
% 多个正弦波的测试
% f1 = 400;
% dis1 = sin(2*pi*f1*t); % 位移
% vel1 = 2*pi*f1.*cos(2*pi*f1*t); % 速度
% acc1 = -(2*pi*f1).^2.*sin(2*pi*f1*t); % 加速度
% dis = dis + dis1;
% vel = vel + vel1;
% acc = acc + acc1;
% 结:频域积分正常恢复信号,时域积分恢复加入的高频信息有误差
% 加噪声测试
acc = acc + (2*pi*f).^2*0.2*randn(size(acc));
% 结:噪声会使积分结果产生大的趋势项
figure
ax(1) = subplot(311);
plot(t, dis), title('位移')
ax(2) = subplot(312);
plot(t, vel), title('速度')
ax(3) = subplot(313);
plot(t, acc), title('加速度')
linkaxes(ax, 'x');
% 由加速度信号积分算位移
[disint, velint] = IntFcn(acc, t, ts, 2);
axes(ax(2));
plot(t, velint, 'r'), legend({'原始信号', '恢复信号'})
axes(ax(1));
plot(t, disint, 'r'), legend({'原始信号', '恢复信号'})
%% 测试积分算子的频率特性
n = 30;
amp = zeros(n, 1);
f = [5:30 40:10:480];
figure
for i = 1:length(f)
%
end
close
figure
plot(f, amp)
title('位移积分的频率特性曲线')
xlabel('f')
ylabel('单位正弦波的积分位移幅值')
% 积分操作由加速度求位移,可选时域积分和频域积分
function [disint, velint] = IntFcn(acc, t, ts, flag)
if flag == 1
else
end
end
其中时域积分的子函数如下
% 时域内梯形积分
function [xn, vn] = IntFcn_Time(t, an)
vn = cumtrapz(t, an);
vn = vn - repmat(mean(vn), size(vn,1), 1);
xn = cumtrapz(t, vn);
xn = xn - repmat(mean(xn), size(xn,1), 1);
end
频域积分的子函数如下(此代码是一个老外编的,在频域内实现积分和微分操作)
function dataout =
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
if (datain_type < 1 || datain_type >
3)
elseif (dataout_type < 1 || dataout_type
> 3)
end
%
%
N = 2^nextpow2(max(size(datain)));
df = 1/(N*dt);
Nyq = 1/(2*dt);
%
iomega_array = 1i*2*pi*(-Nyq : df : Nyq-df);
iomega_exp = dataout_type - datain_type;
%
size1 = size(datain,1);
size2 = size(datain,2);
if (N-size1 ~= 0 && N-size2 ~=
0)
end
%
%
%
A = fft(datain);
A = fftshift(A);
%
for j = 1 : N
end
%
%
A = ifftshift(A);
datain = ifft(A);
%
%
if size1 > size2
else
end
return