• 8.21模拟赛


    T1.5838. 旅游路线

    首先想到O(n^4)枚举两个点,用前缀和算,但是200会T。

    考虑枚举一条扫描线,这是O(n^2)的,扫描用O(n),就可以了。

    当前和已经小于0,就可以舍去了。

    #include<iostream>
    #include<cstdio>
    
    using namespace std;
    
    inline int rd(){
        int ret=0,f=1;char c;
        while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
        while(isdigit(c))ret=ret*10+c-'0',c=getchar();
        return ret*f;
    }
    
    const int MAXN=256;
    
    int n,m;
    int a[MAXN][MAXN];
    int s[MAXN][MAXN];
    
    int main(){
        n=rd();m=rd();
        for(register int i=1;i<=n;i++){
            for(register int j=1;j<=m;j++){
                a[i][j]=rd();
            }
        }
        for(register int i=1;i<=n;i++){
            for(register int j=1;j<=m;j++){
                s[i][j]=s[i][j-1]+a[i][j];
            }
        }
        long long ans=0;
        for(register int i=1;i<=m;i++){
            for(register int j=1;j<=i;j++){
                long long tmp=0;
                for(register int k=1;k<=n;k++){
                    tmp+=1ll*s[k][i]-s[k][j-1];
                    ans=max(ans,tmp);
                    if(tmp<0) tmp=0;//
                }
            }
        }
        
        printf("%lld
    ",ans);
    
    
        return 0;
    }
    View Code

    T2.4737. 金色丝线将瞬间一分为二

    卡树状数组差评!卡常差评!

    把曼哈顿距离的x和y分开算,变成两个序列问题,现在就需要维护一个数据结构,支持单点插入,查询比它小/大的数的个数,以及这两部分数的和。

    第一反应平衡树没救了,幸好看了一眼数据范围感觉常数不行,离散化了用四个树状数组维护一下就好。

    不是所有的曼哈顿距离都一定要转化成切比雪夫距离

    /*卡BIT差评*/ 
    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize("Ofast")
    #pragma GCC optimize("inline")
    #pragma GCC optimize("-fgcse")
    #pragma GCC optimize("-fgcse-lm")
    #pragma GCC optimize("-fipa-sra")
    #pragma GCC optimize("-ftree-pre")
    #pragma GCC optimize("-ftree-vrp")
    #pragma GCC optimize("-fpeephole2")
    #pragma GCC optimize("-ffast-math")
    #pragma GCC optimize("-fsched-spec")
    #pragma GCC optimize("unroll-loops")
    #pragma GCC optimize("-falign-jumps")
    #pragma GCC optimize("-falign-loops")
    #pragma GCC optimize("-falign-labels")
    #pragma GCC optimize("-fdevirtualize")
    #pragma GCC optimize("-fcaller-saves")
    #pragma GCC optimize("-fcrossjumping")
    #pragma GCC optimize("-fthread-jumps")
    #pragma GCC optimize("-funroll-loops")
    #pragma GCC optimize("-fwhole-program")
    #pragma GCC optimize("-freorder-blocks")
    #pragma GCC optimize("-fschedule-insns")
    #pragma GCC optimize("inline-functions")
    #pragma GCC optimize("-ftree-tail-merge")
    #pragma GCC optimize("-fschedule-insns2")
    #pragma GCC optimize("-fstrict-aliasing")
    #pragma GCC optimize("-fstrict-overflow")
    #pragma GCC optimize("-falign-functions")
    #pragma GCC optimize("-fcse-skip-blocks")
    #pragma GCC optimize("-fcse-follow-jumps")
    #pragma GCC optimize("-fsched-interblock")
    #pragma GCC optimize("-fpartial-inlining")
    #pragma GCC optimize("no-stack-protector")
    #pragma GCC optimize("-freorder-functions")
    #pragma GCC optimize("-findirect-inlining")
    #pragma GCC optimize("-fhoist-adjacent-loads")
    #pragma GCC optimize("-frerun-cse-after-loop")
    #pragma GCC optimize("inline-small-functions")
    #pragma GCC optimize("-finline-small-functions")
    #pragma GCC optimize("-ftree-switch-conversion")
    #pragma GCC optimize("-foptimize-sibling-calls")
    #pragma GCC optimize("-fexpensive-optimizations")
    #pragma GCC optimize("-funsafe-loop-optimizations")
    #pragma GCC optimize("inline-functions-called-once")
    #pragma GCC optimize("-fdelete-null-pointer-checks")
    
    
    #include<algorithm>
    #include<iostream>
    #include<cstdio>
    
    using namespace std;
    
    typedef long long ll;
    
    inline ll rd(){
        ll ret=0,f=1;char c;
        while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
        while(isdigit(c))ret=ret*10+c-'0',c=getchar();
        return ret*f;
    }
    
    const int MAXN=1048576;
    
    int n;
    ll m;
    
    struct BIT{
        ll t[MAXN];
        ll query(ll x){
            ll ret=0ll;
            for(;x;x-=x&-x)ret+=t[x];
            return ret;
        }
        void update(ll x,ll w){
            for(;x<=n;x+=x&-x)t[x]+=w;
        }
    }tx,ty,cx,cy;
    
    
    ll xs[MAXN],ys[MAXN],savx[MAXN],savy[MAXN];
    ll lenx[MAXN],leny[MAXN];
    
    int main(){
        n=rd();m=rd();
        ll x,y;
        for(register int i=1;i<=n;i++){
            x=rd();y=rd();
            lenx[i]=xs[i]=savx[i]=x;
            leny[i]=ys[i]=savy[i]=y;
        }
        sort(savx+1,savx+1+n);
        sort(savy+1,savy+1+n);
        int totx=unique(savx+1,savx+1+n)-savx-1;
        int toty=unique(savy+1,savy+1+n)-savy-1;
        for(register int i=1;i<=n;i++){
            xs[i]=lower_bound(savx+1,savx+1+totx,xs[i])-savx;
            ys[i]=lower_bound(savy+1,savy+1+toty,ys[i])-savy;
        }
        ll sumx=0,sumy=0;
        for(register int i=1;i<=n;i++){
            tx.update(xs[i],lenx[i]);
            ty.update(ys[i],leny[i]);
            cx.update(xs[i],1);
            cy.update(ys[i],1);
            ll cntx=cx.query(xs[i]-1)+cx.query(xs[i])-cx.query(n);
            ll cnty=cy.query(ys[i]-1)+cy.query(ys[i])-cy.query(n);
            ll ansx=cntx*lenx[i],ansy=cnty*leny[i];
            ansx+=tx.query(n)-tx.query(xs[i])-tx.query(xs[i]-1);
            ansy+=ty.query(n)-ty.query(ys[i])-ty.query(ys[i]-1);
            sumx+=ansx;sumy+=ansy;
    //        cout<<sumx<<" "<<sumy<<endl;
            if(sumx>m||sumy>m||sumx+sumy>m) return printf("%d
    ",i),0;
        }
        puts("-1");
        return 0;
    }
            
            
    View Code

    T3.4738. 神在夏至祭降下了神谕

    首先有一个O(n^2)的DP,设f[i]为长度为i的前缀最多有多少种方案数。

    f[i]=sigma(f[j]) j<i且[j+1,i]内满足个数差小于m。

    这是一个前缀和,树状数组优化一下前缀和即可。

    #include<iostream>
    #include<cstdlib>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    inline int rd(){
        int ret=0,f=1;char c;
        while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
        while(isdigit(c))ret=ret*10+c-'0',c=getchar();
        return ret*f;
    }
    
    const int MAXN=100005;
    const int offset=MAXN<<1;
    const int MOD=1e9+7;
    
    int f[MAXN],a[MAXN];
    int n,m;
    
    int t[MAXN<<2];
    
    inline int query(int x){
        int ret=0;
        for(int i=x+offset;i;i-=i&-i)ret+=t[i],ret%=MOD;
        return ret;
    }
    inline void update(int x,int w){
        for(int i=x+offset;i<=2*offset;i+=i&-i)t[i]+=w,t[i]%=MOD;
    }
    
    
    int main(){
        n=rd();m=rd();
        update(0,1);
        for(int i=1;i<=n;i++) a[i]=rd();
        for(int i=1;i<=n;i++) a[i]=a[i]?1:-1;
        for(int i=1;i<=n;i++) a[i]=a[i-1]+a[i];
        for(int i=1;i<=n;i++){
            f[i]=query(a[i]+m)-query(a[i]-m-1);
            if(f[i]<0) f[i]+=MOD;
            f[i]%=MOD;
            update(a[i],f[i]);
        }
        cout<<f[n];
        return 0;
    }
    View Code
    未经许可,禁止搬运。
  • 相关阅读:
    委托与事件的关系
    分布式存储ceph——(1)部署ceph
    neutron二
    openstack第五章:cinder
    openstack第六章:dashboard
    openstack第一章:keystone
    openstack第二章:glance
    openstack第三章:nova
    openstack第四章:neutron— 网络服务
    openstack安装
  • 原文地址:https://www.cnblogs.com/ghostcai/p/9511375.html
Copyright © 2020-2023  润新知